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Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST
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Early Measurement of Single Spin
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Transverse SSA’s at √s = 62.4 GeV at RHIC

PRL101, 042001 (2008)
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patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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Reaction Mechanisms: Co-linear QCD

! TSSA requires relative phase btwn different helicity amps

• | ↑ / ↓〉 = (|+〉 ± i|−〉) ⇒ ÂN = σ̂↑−σ̂↓

σ̂↑+σ̂↓ ∼ 2 Im f∗+f−

|f+|2+|f−|2

! Co-linear factorized QCD-parton dynamics

∆σpp↑→πX ∼ fa ⊗ fb ⊗ ∆σ̂ ⊗ Dq→π

requires helicity flip in hard part ∆σ̂ ≡ σ̂↑ − σ̂↓

• QCD interactions conserve helicity
mq → 0 and Born amplitudes real

+ x +m
−−+ +

+
! AN ∼ mqαs

PT
Kane, Repko, PRL:1978
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Early Experiment-Λ Production pp → Λ↑X

• Polarization PΛ ∼ msαs
PT

–twist 3 & small ≈ 5% as predicted

! M. Anselmino hep-ph/0201150
“This makes single spin asymmetries in the
partonic interactions entirely negligible”

• Experiment at odd with this result
PΛ in p p and pBe scattering-Fermi Lab
Bunce. . . Heller PRL:1976. . . 1983
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QCD test-Λ Production pp → Λ↑ X

• Need strange quark to polarize a Λ PΛ = σpp→Λ↑ X−σpp→Λ↓X

σpp→Λ↑ X+σpp→Λ↓X

Dharmartna & Goldstein PRD 1990

Phases in hard part ∆σ̂
interference of loops and tree level
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QCD test-Λ Production pp → Λ↑ X

• Need strange quark to polarize a Λ

PΛ =
σpp→Λ↑X − σpp→Λ↓X

σpp→Λ↑X + σpp→Λ↓X
(1)

Dharmartna & Goldstein PRD 1990
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Interference of loops and tree level Phases in hard part ∆σ̂
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Early Experiment-Λ Production pp → Λ↑X
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• Polarization PΛ ∼ msαs
PT

–twist 3 & small ≈ 5% as predicted

! M. Anselmino hep-ph/0201150
“This makes single spin asymmetries
in the partonic interactions entirely negligible”

• Experiment at odd with this result
PΛ in p p and pBe scattering-Fermi Lab
Bunce. . . Heller PRL:1976. . . 1983
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!f" #p→#$̄↑X

Num!PT"!%!1"y "2!1"4C "2#16C2& ū'ND$↑/u#%!1"y "2!1"2C "2#4C2&! d̄'ND$↑/d# s̄'ND$↑/s"

#%!1"4C "2#!1"y "216C2&u'ND$↑/ ū#%!1"2C "2#!1"y "24C2&!d'ND$↑/ d̄#s'ND$↑/ s̄",

Den!PT":'ND$↑/q→D̂$/q . !A13"

!g" #̄p→ #̄$̄↑X

Num!PT"!%!1"4C "2#!1"y "216C2& ū'ND$↑/u#%!1"2C "2#!1"y "24C2&! d̄'ND$↑/d# s̄'ND$↑/s"

#%!1"y "2!1"4C "2#16C2&u'ND$↑/ ū#%!1"y "2!1"2C "2#4C2&!d'ND$↑/ d̄#s'ND$↑/ s̄",

Den!PT":'ND$↑/q→D̂$/q . !A14"

Notice that contrary to the case of $ particle production, here the leading and nonleading quark contributions are mixed

between partonic distributions and fragmentation functions, with terms of the type q ('N)D$/ q̄ and q̄ ('
N)D$/q . Which terms

are dominating depends on the kinematic range considered (x and zh values". Moreover, the (1"y)2 factors can also be

relevant, for large y values. Therefore, it is not easy to find approximate expressions for PT ; in any case, their range of validity

is limited to particular kinematical configurations and has to be considered with care.

%1& For a review of data see, e.g., K. Heller, in Proceedings of Spin
96, edited by C.W. de Jager, T.J. Ketel, and P. Mulders !World
Scientific, Singapore, 1997"; A.D. Panagiotou, Int. J. Mod.
Phys. A 5, 1197 !1990"; L.G. Pondrom, Phys. Rep. 122, 57
!1985".

%2& For a recent and complete review of all theoretical models see
J. Félix, Mod. Phys. Lett. A 14, 827 !1999".

%3& M. Anselmino, D. Boer, U. D’Alesio, and F. Murgia, Phys.
Rev. D 63, 054029 !2001".

%4& P.J. Mulders and R.D. Tangerman, Nucl. Phys. B461, 197
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edited by Hiroyasu Ejiri, Kichiji Hatanaka, Kenichi Imai, and
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%7& M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B 362,
164 !1995"; Phys. Rev. D 60, 054027 !1999"; M. Anselmino
and F. Murgia, Phys. Lett. B 442, 470 !1998"; 483, 74 !2000".

%8& D. Sivers, Phys. Rev. D 41, 83 !1990"; 43, 261 !1991".
%9& J.C. Collins, Nucl. Phys. B396, 161 !1993".

%10& E706 Collaboration, L. Apanasevich et al., Phys. Rev. Lett. 81,
2642 !1998".

%11& C.-Y. Wong and H. Wang, Phys. Rev. C 58, 376 !1998".
%12& X.-N. Wang, Phys. Rev. C 61, 064910 !2000".
%13& Y. Zhang, G. Fai, G. Papp, G. Barnaföldi, and P. Lévai, Phys.
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Mechanism FSI produce phase in TSSAs-Leading Twist

Brodsky, Hwang, Schmidt PLB: 2002

SIDIS w/ transverse polarized nucleon target e p↑ → eπX

Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links

∆σ ∼ D⊗∆f⊥⊗σ̂Born

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81

Collins, Metz: PRL 2005 Universality & Factorization “Maximally” Correlated in Frag.

Collins, Qui PRD 08 Factorization in jeopardy for H H → h h X at high PT
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Fig. 1. One-loop contribution to the spin-dependent trans-

verse-momentum distribution in the nucleon.

where ψ represents the quark field, ψN the nucleon, φ
the charged scalar diquark with charge e2. At one-loop

order, we have the following expression from Fig. 1,

f ⊥
1T (x, k⊥)

= −ig2e1e2

4(2π)3Λ(k2⊥)

∫

d4q

(2π)4
U(PS)(/k + m)

× γ +(/k + /q + m)U(PS)

× 2(1− x) − q+

q+ + iε

1

(k + q)2 − m2 + iε

(5)× 1

(P − k − q)2 − λ2 + iε

1

q2 + iε
+ h.c.,

where qµ is the gluon momentum. M , m and λ are

the masses of the nucleon, quark and diquark, respec-

tively. U(PS) is the on-shell spinor for the nucleon

with momentum P and polarization S. Λ(k2⊥) denotes

Λ
(

k2⊥
)

= k2⊥ + x(1− x)

(

−M2 + m2

x
+ λ2

1− x

)

.

(6)

The q− integration can be done by the contour

method. Adding the hermitian conjugating contribu-

tion results in taking the imaginary part of the eikonal

propagator 1/(q+ + iε). We obtain

f ⊥
1T (x, k⊥)

= −ig2e1e2

8x(2π)3Λ(k2⊥)
(m + xM)

×
∫

d2q⊥
(2π)2

Tr
[

γ †(/q⊥ − /k⊥)/P γ5/S
]

(7)× 1

(q⊥ − k⊥)2
1

M2 − q2⊥+λ2

(1−x) − q2⊥+m2

x

.

Fig. 2. Tree contribution to the spin-independent transverse-

momentum distribution.

The integration over $q⊥ yields,

f ⊥
1T (x, k⊥) = g2e1e2

(2π)4
(1− x)(m + xM)

4Λ(k2⊥)

(8)× ε+αβγ k⊥αPβSγ
1

k2⊥
ln

Λ(k2⊥)

Λ(0)
,

where in the above formulas, we choose P+ = 1.

The spin-independent transverse-momentumdistri-

bution has a contribution from the tree diagram shown

in Fig. 2. A straightforward calculation leads to

(9)f (x, k⊥) = g2(1− x)[k2⊥ + (xM + m)2]
2(2π)3Λ2(k2⊥)

.

The ratio of the spin-dependent and independent

distributions is

f ⊥
1T

f
(x, k⊥) = e1e2(m + xM)

4πP+
Λ(k2⊥)

k2⊥ + (xM + m)2

(10)× ε+αβγ k⊥αPβSγ
1

k2⊥
ln

Λ(k2⊥)

Λ(0)
.

This is the same as Py in Ref. [2] when Sµ =
(0,0,0,1). Once again, the calculation demonstrates

that the standard definition of the parton distribution in

the non-singular gauge does take into account properly

the effects of the final-state interactions [8].

In the light-cone gaugeA+ = 0, however, the gauge

link L vanishes. Where are the final state interactions?

To find the answer, we consider all contributions to

f (x, k⊥) at one-loop order in both Feynman and

light-cone gauges. In the light-cone gauge, the gluon

propagator has an extra term

(11)*Dµν(q) = i

q2
qµnν + qνnµ

q · n ,

where 1/(q · n) is singular at q · n = 0 and requires

a regularization. In a scattering process, all the contri-

butions coming from this extra term cancel after using

Collins PLB 2002

L.G & Goldstein 2002, 2003
Boer-Mulders Fnct,



T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, Boer, Pijlman, Mulders (BPM) NPB 2003
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T-Odd Effects Process Dependence and QCD-Wilson Line

• Sub-class of interactions of colinear & transverse gluons re-summed to render
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• Wilson line emerges from resummation of gluon ISI and FSI btw. active
quark and hadron remnants → U [C]

[0,ξ] = Pexp(−ig
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0 dsµAµ)

• The path [C] is fixed by hard subprocess within hadronic process.
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T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003
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T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions
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• The path [C] is fixed by hard subprocess within hadronic process.
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Factorization

• Diagrammatic factorization Politzer NPB 80, Ellis et al. NPB 82

• Restricts hadrons well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• While parton momenta with associate hadron e.g. P · p ∼ K · k ∼ P 2 = M2

Partons involved in hard scattering described “Sudakov” decomposition P and n

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

k =
1

z
Kµ + kµ

T + σhnµ
h

n2 = 0 is a null vector s.t.
• P · n = 1 Ph · nh = 1
• x = p · n z−1 = k · nh

• σ ∼ M2 σh ∼ M2
h

. . .

. . .

k

p

P

K

Φ

∆

• SIDIS factorized into distribution Φ future pointing [+]
fragmentation ∆ correlators past pointing [−]

Uη
[ξ,∞] = UT

[ξT ,∞]U
η
[ξ−,∞]

, where U [C]
[ξ,∞] = Pexp(−ig

∫ ∞
ξ dη · A)TMD-Integrate over 

Factorization and TMD Correlator

• Diagramatic factorization Politzer NPB 80, Ellis et al. NPB 82

• Restricts hadrons well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• Inside correlator momenta are soft P · p ∼ P 2 = M2

• Partons involved decomposed according to “Sudakov” P and n vectors

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

k =
1

z
Kµ + kµ

T + σhnµ
h

n2 = 0, P · n = 1, Ph · nh = 1, σ = p · P ∼ M2, σh ∼ M2
h . . .

. . .

. . .

k

p

P

K

Φ

∆

Diagramatic “Factorization” TMD Correlators Gauge Links

Politzer NPB 80, Ellis et al. NPB 82, Mulders et al. 1997

• Seperation hadronic cross section hard partionic, hard scale and soft non-
perturbative pieces-PDFs and FFs - Factorization

• Restricts hadrons well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• Inside correlator momenta are soft P · p ∼ P 2 = M2

• Partons involved decomposed according to “Sudakov” P and n vectors

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

k =
1

z
Kµ + kµ

T + σhnµ
h

n2 = 0, P · n = 1, K · nh = 1, σ = (p · P − xM2) ∼ M2, σh ∼ M2
h . . .

• Organizes Twist Expansion

• Determines gauge-link by summing collinear gluon interactions btwn. soft and hard

• Aµ ∝ (A · n)P µ
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gluon interactions btwn. soft & hard

• Aµ ∝ (A · n)P µ
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• Organizes Twist Expansion

• Determines gauge-link by summing collinear & transverse
gluon interactions btwn. soft & hard

• Aµ ∝ (A · n)P µ

• The path [C] is fixed by hard subprocess within hadronic process.

Φ[U[C]](x, pT ) =
∫

d(p · P )Φ(p, P )

=
∫

d(ξ · P )d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]ψ(ξ−, ξT )|P 〉|ξ·n=0

∆[U[C]](z, kT ) =
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d(ξ · K)d2ξT

(2π)3
eik·ξ 〈0 |U [C]
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• See Ch. 3 Ph.D Thesis C. Bomhof
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• Seperate hadronic cross section hard partionic, hard scale and soft non-perturbative
pieces-PDFs and FFs - Factorization
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The hard tree amplitudes in SIDIS and DY dressed with leading 
co-linear gluon insertions “eikonalize”. Convoluting this hard 
amplitude with soft factors determines    “[ C ]” factors
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Figure 3.2: The tree-level hard amplitudes in SIDIS and Drell-Yan scattering dressed with
one additional gluon. These give rise, for example, to final state (a) and initial state inter-
actions in SIDIS (b) and initial state interactions in Drell-Yan scattering (c).

the handbag diagram that was taken as the starting point, except that it appears convoluted
with the gauge invariant correlators Φ[U] and ∆[U] instead. We will now sketch how this
is achieved by a resummation of collinear gluon interactions.

We take the handbag diagram with Hµ(p,k)= ieqγµ as our starting point and associate
to it all diagrams that are obtained by dressing it with additional gluons coming from
the protonic target remnants. The diagram with one extra gluon connecting to the hard
amplitude to the left of the cut is portrayed in Figure 3.1a. Its expression is

1
2M

∫
d4pd4k d4p1 δ

4(p+q−k) Tr
[
Φ

aρ
A (p,p1) H†µ(p,k)∆(k) Hρν;a(p,k;p1)

]
, (3.2)

with the matrix element

Φ
a ρ
Aij(p,p1) =

∫
d4ξ

(2π)4
d4η

(2π)4 ei(p−p1)·ξeip1·η 〈P,S |ψj(0) Aaρ(η)ψi(ξ) |P,S 〉 . (3.3)

At leading twist it are the collinear gluons that contribute Φaρ
A ≈Pρ nλΦaλ

A /(P·n) (later on
in this section we will see that also some contributions from transverse gluons are pro-
moted to leading twist). Since we have taken the electromagnetic vertex as the basic
hard function, the gluon coming from the target remnants can only couple to the scattered
(outgoing) quark k, Figure 3.2a. We do not take the case into account where it attaches
to the incoming quark that originates from the same soft correlator. These partons are ap-
proximately collinear, p≈ xP and p1≈ x1P, and their interaction is part of the soft physics
described by the quark correlator. The expression of the diagram in Figure 3.1a for col-
linear gluons, then, involves the hard function (neglecting quark masses)

PρHρν;a(p,k;p1) =
(
ig /Pta) i( /k− /p1)

(k−p1)2+iε
(
ieqγν

)
, (3.4)

depicted in Figure 3.2a and with the strong coupling constant g. It is seen from ex-
pression (3.2) that this hard function appears left-multiplied by the quark fragmentation
correlator ∆(k). The matrix product ∆(k) /k is suppressed by the equations of motion of the
quark fields in the fragmentation correlator (the suppression of this product is also seen
by noting that at leading twist ∆(k)∝ /k) and, hence, the hard function (3.4) as it appears in
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Figure 3.1: Examples of diagrams with an additional gluonic interaction be-
tween the soft and the hard functions.

new aspects in small steps at a time. In the first section we will treat SIDIS and Drell-
Yan scattering, two of the simplest processes, as they only involve initial or final state
interactions. Then we will consider a particular contribution to prompt photon production
as an example of a process where more gluonic interactions are possible. In section 3.3
a prescription will be given to more easily predict the structure of the gauge link for
arbitrary hard functions. Using this prescription we will calculate the Wilson lines that
occur in direct photon production and dijet production in proton-proton scattering, since
these are the processes that will be studied in more detail in the next chapter. To conclude
this chapter we will try to argue the validity of the prescription in section 3.4.

3.1 Electroweak Processes: SIDIS and Drell-Yan
In section 2.4 we have hypothesized that if the momenta of the incoming and outgoing
hadrons in semi-inclusive deep inelastic scattering are well-separated it is reasonable to
assume that the observed hadron in the final state has materialized from the soft radiation
emitted by the current quark (i.e. the active quark). In that case the quark contribution to
the hadron tensor can be written in terms of quark correlators Φ(p) and quark fragmenta-
tion correlators ∆(k) connected to each other through hard functions H(p,k):

Wµν =
1

2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ(p) H†µ(p,k)∆(k) Hν (p,k)

]
, (3.1)

where we have suppressed the summation over quark flavors. Comparing to expres-
sion (2.31) it is seen that at tree-level the hard function is just an electromagnetic vertex
Hµ(p,k)= ieqγµ (the proton charge factors e have been extracted and appear in the struc-
ture constant α in the cross section (2.30)). In the parton model contribution the quark
distribution and fragmentation correlators are given by expressions (2.28) and (2.32). Ob-
viously, this is not a physically meaningful expression, since the correlators are not gauge
invariant. However, in the diagrammatic approach an expression that involves the properly
gauge invariant correlators can be obtained by resumming all collinear gluon interactions
between the soft and the hard factors [57], such as those in Figure 3.1. The result will be
the same as the expression in (3.1) and with the same hard function Hµ(p,k)= ieqγµ as in

Bomhof, Mulders, Pijlman, Boer et al.
Gauge link determined by resumming all 
gluon interactions btwn soft and hard
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is achieved by a resummation of collinear gluon interactions.

We take the handbag diagram with Hµ(p,k)= ieqγµ as our starting point and associate
to it all diagrams that are obtained by dressing it with additional gluons coming from
the protonic target remnants. The diagram with one extra gluon connecting to the hard
amplitude to the left of the cut is portrayed in Figure 3.1a. Its expression is

1
2M

∫
d4pd4k d4p1 δ

4(p+q−k) Tr
[
Φ

aρ
A (p,p1) H†µ(p,k)∆(k) Hρν;a(p,k;p1)

]
, (3.2)

with the matrix element

Φ
a ρ
Aij(p,p1) =

∫
d4ξ

(2π)4
d4η

(2π)4 ei(p−p1)·ξeip1·η 〈P,S |ψj(0) Aaρ(η)ψi(ξ) |P,S 〉 . (3.3)

At leading twist it are the collinear gluons that contribute Φaρ
A ≈Pρ nλΦaλ

A /(P·n) (later on
in this section we will see that also some contributions from transverse gluons are pro-
moted to leading twist). Since we have taken the electromagnetic vertex as the basic
hard function, the gluon coming from the target remnants can only couple to the scattered
(outgoing) quark k, Figure 3.2a. We do not take the case into account where it attaches
to the incoming quark that originates from the same soft correlator. These partons are ap-
proximately collinear, p≈ xP and p1≈ x1P, and their interaction is part of the soft physics
described by the quark correlator. The expression of the diagram in Figure 3.1a for col-
linear gluons, then, involves the hard function (neglecting quark masses)

PρHρν;a(p,k;p1) =
(
ig /Pta) i( /k− /p1)

(k−p1)2+iε
(
ieqγν

)
, (3.4)

depicted in Figure 3.2a and with the strong coupling constant g. It is seen from ex-
pression (3.2) that this hard function appears left-multiplied by the quark fragmentation
correlator ∆(k). The matrix product ∆(k) /k is suppressed by the equations of motion of the
quark fields in the fragmentation correlator (the suppression of this product is also seen
by noting that at leading twist ∆(k)∝ /k) and, hence, the hard function (3.4) as it appears in
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where the subscript I denotes the interaction picture and t0 defines the quantization
plane.

The assumption of the diagrammatic expansion can

P P

Figure 2.7: An interac-
tions which can be ab-
sorbed in the jet defini-
tion

now be used to expand the bracketed term in the above
equation. In general a complete expansion will connect an
arbitrary number of lines to the several jets. Such a com-
plete expansion, however, is not necessary. The interactions
between lines which are connected to one jet as illustrated
in Fig. 2.7 can be absorbed in the matrix elements. There-
fore, only those parts will be expanded which cannot be ab-
sorbed in one of the participating jets. In general this leads
to matrix elements in which the interaction picture fields
become Heisenberg fields.

Applying the diagrammatic expansion

Using the diagrammatic approach the cross section for a general scattering process
can be calculated in a number of steps. An outline of its derivation for two examples
is given in appendix 2.B.

1. Write down all squared Feynman diagrams with an arbitrary amount of exter-
nal parton-lines and connect them in all possible ways to the external jets and
particles. Each external parton-line carries an independent momentum variable
(for example pi or ki). Any interaction which can be absorbed in one of the
participating jets should not be included.

2. Replace the external spinors or polarization vectors of step 1 by an appropriate
correlator as will be defined below. For instance, uū→ Φ, uεµū→ ΦαA, etc.

3. Integrate over all parton momenta and impose total momentum conservation by
adding (2π)4δ4(incoming − outgoing parton momenta).

4. If there is any QED part in the diagram, calculate that part with ordinary Feyn-
man rules.

5. Divide by the flux factor and multiply by the phase-space factors of the produced
particles, d3ki /((2π)

32Eki
).

Note(!) interactions between lines which are 
connected to “same” jet absorbed into matrix 

element, e.g. Pijlman Ph.D. thesis 2006

Summation of gluons from soft to hard at leading twist involves gluons collinear to 
hadron’s momentum  

Diagramatic “Factorization” TMD Correlators Gauge Links

Politzer NPB 80, Ellis et al. NPB 82, Mulders et al. 1997

• Seperate hadronic cross section hard partionic, hard scale and soft non-perturbative
pieces-PDFs and FFs - Factorization

• Restricts hadrons to be well sep. in momentum phase-space P · K ∼ p · k ∼ Q2

• Inside correlator momenta are soft P · p ∼ P 2 = M2

• Partons involved decomposed according to “Sudakov” P and n vectors

k =
1

z
Kµ + kµ

T + σhnµ
h

p = xP µ + pµ
T + σnµ

∼ Q ∼ M ∼ M2/Q

n2 = 0, P · n = 1, K · nh = 1, σ = (p · P − xM2) ∼ M2, σh ∼ M2
h . . .

• Organizes Twist Expansion of correlators

• Determines gauge-link by summing collinear & transverse
gluon interactions btwn. soft & hard

• Aµ ∝ (A · n)P µ + Aµ
T
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expression (3.2) effectively equals

PρHρν;a(p,k;p1) ≈ gta

x1−iε
(
ieqγν

)
, (3.5)

where we have used the matrix identity /P /k=2P·k− /k /P and all masses have been ne-
glected.

Let us stop and reflect on this result for a moment. Obviously, the coupling of the
gluon p1 to the basic hard function Hµ= ieqγµ has introduced an extra vertex and propa-
gator structure, see Figure 3.2a. What is obtained in (3.5) is that in the full hadronic ex-
pression (3.2) this additional structure at leading twist reduces to a scalar factor in Dirac
space, depending only on the momentum fraction x1 of the inserted gluon. People say that
the vertex and propagator have been eikonalized. The inclusion of an extra collinear gluon
has resulted in the original hard function Hµ= ieqγµ multiplied by an eikonalized propa-
gator. Since the basic hard function Hµ= ieqγµ does not depend on the momentum p1 of
the gluon, the integration over this momentum and the eikonal factor can be absorbed in
the correlator ΦA, such that expression (3.2) becomes

1
2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ

[Un
[∞;ξ]]

(g) (p) H†µ(p,k)∆(k) Hν (p,k)
]
, (3.6)

with the correlator

Φ
[Un

[∞;ξ]]
(g) (p) =

1
P·n

∫
d4p1

gta

x1−iε
nλΦaλ

A (p,p1) (3.7a)

=

∫
d4ξ

(2π)4 eip·ξ 〈P,S |ψ(0)
[
−ig
∫ 0

+∞
dλ n·Aa(ξ+λn) ta

]
ψ(ξ) |P,S 〉 . (3.7b)

The expression between brackets is the order g term of the Wilson line Un
[∞;ξ] that connects

to the quark field at the space-time point ξ (see Figure 2.9b).
From (3.6) it is seen that the gluon attachment in Figure 3.1a can be reduced to the

original bare process (3.1) by including in the quark correlator the order g term of the
Wilson line Un

[∞;ξ]. It will come as no surprise now that multiple collinear gluon insertions
on the l.h.s. of the cut give the higher orders of this Wilson line. In the SIDIS process this
can straightforwardly be checked explicitly due to the (relative) simplicity of the process:
the additional gluons can only couple to the outgoing quark (that is, there are only final-
state interactions). All these couplings can be eikonalized in much the same way as
for the one-gluon case described above. For instance, the m-gluon insertion diagram
will give an eikonal factor of the form (x1−iε)−1× · · ·× (x1+ · · ·+xm−iε)−1 where xi is the
momentum fraction of the ith gluon. In the multi-gluon correlator Φ(n·A1)···(n·Am) this leads
to the path-ordering as required for the order gm term of the Wilson line. The gluon
couplings to the r.h.s. of the cut are treated similarly. For example, the one-gluon coupling
to the r.h.s. of the cut can be eikonalized giving the eikonal factor gta(x+iε)−1. Since this
diagram involves the quark correlatorΦaρ

A (p−p1,−p1) which contains the exponent e−ip1·η,
see Figure 3.1b, it is easily seen to contribute the order g term of the Wilson line Un

[0;∞]
that connects to the quark field at the space-time point 0 (see Figure 2.9b). Summing all

T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.
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T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003
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Source of T-Odd Contributions to TSSA and AA

• “T-odd” distribution-fragmentation functions enter transverse momentum
dependent correlators at leading twist Boer, Mulders: PRD 1998

∆(z, k⊥)=
1

4
{D1(z, k⊥)" n− + H⊥

1 (z, k⊥)
σαβk⊥αn−β

Mh
+ D⊥

1T(z, k⊥)
εµνρσγµnν

−kρ
⊥Sσ

hT

Mh
+ · · ·}

Φ(x, p⊥)=
1

2
{f1(x, p⊥)" n+ + h⊥

1 (x, p⊥)
σαβpTαn+β

M
+ f⊥

1T (x, p⊥)
εµνρσγµnν

+pρ
⊥Sσ

T

M
· · ·}

SIDIS cross section

dσ(N→(πX
{λ,Λ} ∝ f1 ⊗ dσ̂(q→(q ⊗ D1 +

k⊥
Q

f1 ⊗ dσ̂(q→(q ⊗ D1 · cosφ
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Q2
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1
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1L ⊗ dσ̂(q→(q ⊗ H⊥

1 · sin(2φ) Kotzinian−MuldersPLB
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Azimuthal asymm. corresponds to transv. moments of correlator
In factorized processes 

tors ! and " [23–32]. To generate T-odd contributions for
TMD functions in such an approach one needs to go at least
to one-loop [33] performing a perturbative expansion on
the gauge link [24,25]. Extraction of the complete T-odd
gluonic pole contribution is difficult. Our approach, start-
ing directly with the color gauge-invariant multiparton
correlator (that is having resummed the gauge link [14])
has the advantage we can work with tree-level matrix
elements and just perform a spectral analysis to extract
the T-odd gluonic pole contributions.

In the next section we give details on the gluonic pole
matrix elements, followed by the spectator model ap-
proach. In the concluding section, we outline the short-
comings of our approach and also discuss possibilities to
use the approach for more detailed estimates for the T-odd
FFs.

II. GLUONIC POLE MATRIX ELEMENTS

At high energies, it is useful to make a Sudakov decom-
position of the momenta of active partons, k ¼ xPþ !nþ
kT . The Sudakov vector n is an arbitrary lightlike four-
vector n2 ¼ 0 that has nonzero overlap P # n with the
hadron’s momentum P. We will simply choose P # n ¼
1. In a hard process, the Sudakov vector incorporates the
presence of other momenta that are hard with respect to the
hadron under consideration, e.g. n $ P0=P # P0. We can
now also work with light-cone coordinates. Including mass
effects one would have n% ¼ n and nþ ¼ P% 1

2M
2n and

with k& ' k # n( we have

kþ ¼ k # n ¼ x (3)

k% ¼ k # P% 1
2xM

2 ¼ !þ 1
2xM

2: (4)

Vectors in the transverse plane can be obtained from the

transverse projector, g"#
T ¼ g"# % nf"þ n

#g
% .

As the effects of the component k% will appear sup-
pressed by two powers of the hard scale as compared to the
collinear term, it is integrated over and one considers
quark-quark correlators on the light-front (LF: $ # n ¼ 0)

!½U*
ij ðx; kTÞ ¼

Z dð$ # PÞd2$T
ð2%Þ3

- eik#$hPj # jð0ÞU½0;$* ið$ÞjPicLF: (5)

TheWilson line or gauge linkU½&;$* ¼ P exp½%igRC ds #
AaðsÞta* is a path-ordered exponential along the integration
path C with endpoints at & and $. Its presence in the
hadronic matrix element is required by gauge-invariance.
In the TMD correlator (5) the integration path C in the
gauge link is process-dependent. In the diagrammatic ap-
proach the Wilson lines arise by resumming all gluon
interactions between the soft and the hard partonic parts
of the hadronic process [14,34–36].

Collinear quark distribution functions are obtained from
the TMD correlator after integration over pT ,

!ðxÞ ¼
Z
d2kT!

½U*ðx; kTÞ

¼
Z dð$ # PÞ

2%
eix$#PhPj # ð0ÞUn

½0;$* ð$ÞjPicLC: (6)

The nonlocality is restricted to the light-cone (LC: $ # n ¼
$T ¼ 0) and the gauge link is unique, being the straight-
line path along n. In azimuthal asymmetries one needs the
transverse moments contained in the correlator

!'½U*
@ ðxÞ ¼

Z
d2kTk

'
T!

½U*ðx; kTÞ: (7)

The TMD correlator, expanded in distribution functions
depending on x and k2T contains T-even and T-odd func-
tions, since the correlator is not T-invariant, which is
attributed to the gauge link that depending on the process,
accounts for specific initial and/or final-state interactions
depending on the color flow in the process. For the col-
linear case, the link structure becomes unique in the case of
integration over kT [Eq. (6)]. For spin 0 and spin 1=2 the
quark and gluon correlators that appear at leading order in
high energy processes contain only T-even operator com-
binations. Evaluated between plane waves one only finds
T-even functions depending on x in the parametrization.
For the collinear weighted case, the transverse moments

in Eq. (7) one retains a nontrivial link-dependence that
prohibits the use of T-invariance as a constraint. It is
possible, however, to decompose the weighted quark (and
also gluon) correlators as

!'½U*
@ ðxÞ ¼ ~!'

@ ðxÞ þ C½U*
G %!'

Gðx; xÞ; (8)

with calculable process-dependent gluonic pole factors

C½U*
G and process (link) independent correlators ~!@ and

!G. The correlator ~!@ contains the T-even operator com-
bination, while !G contains the T-odd operator combina-
tion. The latter is precisely the soft limit x1 ! 0 of a quark-
gluon correlator !Gðx; x1Þ of the type

!'
Gðx; x% x1Þ ¼ n"

Z dð$ # PÞ
2%

dð& # PÞ
2%

- eix1ð&#PÞeiðx%x1Þð$#PÞhPj ð0ÞUn
½0;&*g

-G"'ð&ÞUn
½&;$* ð$ÞjPicLC; (9)

The universal T-odd distribution functions in the parame-
trization of !Gðx; xÞ appear in T-odd observables such as
single spin asymmetries with the specific gluonic pole
factors from Eq. (8).
The situation for fragmentation functions is different.

The TMD fragmentation correlator depending on the col-
linear and transverse components of the quark momentum,
k ¼ 1

z Pþ kT þ !n, is given by [14,18]

L. P. GAMBERG, A. MUKHERJEE, AND P. J. MULDERS PHYSICAL REVIEW D 77, 114026 (2008)
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Relations between GPDs and TMDsRelations between GPDs and TMDs
Non-trivial relations for “T-odd” parton distributions:
M. Burkardt [Nucl.Phys. A735, 185],  [PRD66, 114005]

 Average transverse momentum of unpolarized partons in a 
            transversely polarized nucleon:

coll. “soft gluon pole” matrix element

Manipulation of Gauge Links + Impact parameter representation

Impact parameter representation for GPD E
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Gauge Links and Transverse Momentum-Spin Correlations

εij
T ki

⊥Sj
Tf⊥(1)

1T (x, k2
⊥) ∼

Gauge Links and Transverse Momentum-Spin Correlations

εij
T ki

⊥Sj
Tf⊥(1)

1T (x, k2
⊥) ∼

=< ki
⊥(x) >UT (1)

A
Ph⊥/M

UT sin(φ − φS)(x, z) =
(−2)

∑
a e2

axf⊥(1)a
1T (x)Da

1(z)∑
a e2

axfa
1 (x)Da

1(z)
(2)

4. SIVERS EFFECT IN SIDIS: FIRST INSIGHTS

The first information on the Sivers function from SIDIS was obtained in [39] from a

study of preliminary HERMES data [64] on the ’weighted’ SSA defined as

A
Ph⊥/MN sin(!−!S)
UT (x) ≡

1

ST

"i

〈

Ph⊥,i
MN

N
↑
i −

Ph⊥,i
MN

N
↓
i

〉

"i

〈

1
2
(N↑

i +N
↓
i )

〉 (12)

where N
↑(↓)
i are sums over event counts for the respective transverse target polarization,

and 〈. . .〉 denotes averaging — here over z and Ph⊥. The advantage of ’weighted SSAs’
is that the integrals in the structure function (11) can be solved exactly [24] yielding

A
Ph⊥/MN sin(!−!S)
UT (x,z) =

2
∫

d!P2h⊥
Ph⊥
MN
F
sin(!−!S)
UT (x,z,Ph⊥)

∫

d!P2h⊥FUU (x,z,Ph⊥)
=

(−2) "a e2a x f
⊥(1)a
1T (x)Da1(z)

"a e
2
a x f

a
1 (x)Da1(z)

(13)

where f
⊥(1)a
1T (x) ≡

∫

d2!pT
!p2T
2M2

N

f⊥a1T (x,!p2T ).

While the weighting is preferable from a theory point of view, it makes data analysis

harder. It is difficult to control acceptance effects, and the HERMES Collaboration does

not recommend the use of the preliminary data [64]. In ’unweighted SSAs’ defined as

A
sin(!−!S)
UT (x) ≡

1

ST

"i

〈

N
↑
i −N

↓
i

〉

"i

〈

1
2
(N↑

i +N
↓
i )

〉 (14)

acceptance effects largely cancel. Therefore such data have been finalized first, and one
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In view of the sizeable error bars of the first data it was necessary to minimize the number

of fit parameters. For that in [42] effects of sea quarks were neglected. In addition, the

prediction from the limit of a large number of colors Nc in QCD [65], namely

f⊥u1T (x,!p2T ) = − f⊥d1T (x,!p2T ) modulo 1/Nc corrections, (16)

was imposed as an exact constraint. Analog relations holds also for antiquarks, and all
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was imposed as an exact constraint. Analog relations holds also for antiquarks, and all

are valid for x of the order xNc = O(N0c ) [65]. The following Ansatz was made and

In azimuthal asymm. one uses transv. moments of the correlator

tors ! and " [23–32]. To generate T-odd contributions for
TMD functions in such an approach one needs to go at least
to one-loop [33] performing a perturbative expansion on
the gauge link [24,25]. Extraction of the complete T-odd
gluonic pole contribution is difficult. Our approach, start-
ing directly with the color gauge-invariant multiparton
correlator (that is having resummed the gauge link [14])
has the advantage we can work with tree-level matrix
elements and just perform a spectral analysis to extract
the T-odd gluonic pole contributions.

In the next section we give details on the gluonic pole
matrix elements, followed by the spectator model ap-
proach. In the concluding section, we outline the short-
comings of our approach and also discuss possibilities to
use the approach for more detailed estimates for the T-odd
FFs.

II. GLUONIC POLE MATRIX ELEMENTS

At high energies, it is useful to make a Sudakov decom-
position of the momenta of active partons, k ¼ xPþ !nþ
kT . The Sudakov vector n is an arbitrary lightlike four-
vector n2 ¼ 0 that has nonzero overlap P # n with the
hadron’s momentum P. We will simply choose P # n ¼
1. In a hard process, the Sudakov vector incorporates the
presence of other momenta that are hard with respect to the
hadron under consideration, e.g. n $ P0=P # P0. We can
now also work with light-cone coordinates. Including mass
effects one would have n% ¼ n and nþ ¼ P% 1

2M
2n and

with k& ' k # n( we have

kþ ¼ k # n ¼ x (3)

k% ¼ k # P% 1
2xM

2 ¼ !þ 1
2xM

2: (4)

Vectors in the transverse plane can be obtained from the

transverse projector, g"#
T ¼ g"# % nf"þ n

#g
% .

As the effects of the component k% will appear sup-
pressed by two powers of the hard scale as compared to the
collinear term, it is integrated over and one considers
quark-quark correlators on the light-front (LF: $ # n ¼ 0)

!½U*
ij ðx; kTÞ ¼

Z dð$ # PÞd2$T
ð2%Þ3

- eik#$hPj # jð0ÞU½0;$* ið$ÞjPicLF: (5)

TheWilson line or gauge linkU½&;$* ¼ P exp½%igRC ds #
AaðsÞta* is a path-ordered exponential along the integration
path C with endpoints at & and $. Its presence in the
hadronic matrix element is required by gauge-invariance.
In the TMD correlator (5) the integration path C in the
gauge link is process-dependent. In the diagrammatic ap-
proach the Wilson lines arise by resumming all gluon
interactions between the soft and the hard partonic parts
of the hadronic process [14,34–36].

Collinear quark distribution functions are obtained from
the TMD correlator after integration over pT ,

!ðxÞ ¼
Z
d2kT!

½U*ðx; kTÞ

¼
Z dð$ # PÞ

2%
eix$#PhPj # ð0ÞUn

½0;$* ð$ÞjPicLC: (6)

The nonlocality is restricted to the light-cone (LC: $ # n ¼
$T ¼ 0) and the gauge link is unique, being the straight-
line path along n. In azimuthal asymmetries one needs the
transverse moments contained in the correlator

!'½U*
@ ðxÞ ¼

Z
d2kTk

'
T!

½U*ðx; kTÞ: (7)

The TMD correlator, expanded in distribution functions
depending on x and k2T contains T-even and T-odd func-
tions, since the correlator is not T-invariant, which is
attributed to the gauge link that depending on the process,
accounts for specific initial and/or final-state interactions
depending on the color flow in the process. For the col-
linear case, the link structure becomes unique in the case of
integration over kT [Eq. (6)]. For spin 0 and spin 1=2 the
quark and gluon correlators that appear at leading order in
high energy processes contain only T-even operator com-
binations. Evaluated between plane waves one only finds
T-even functions depending on x in the parametrization.
For the collinear weighted case, the transverse moments

in Eq. (7) one retains a nontrivial link-dependence that
prohibits the use of T-invariance as a constraint. It is
possible, however, to decompose the weighted quark (and
also gluon) correlators as

!'½U*
@ ðxÞ ¼ ~!'

@ ðxÞ þ C½U*
G %!'

Gðx; xÞ; (8)

with calculable process-dependent gluonic pole factors

C½U*
G and process (link) independent correlators ~!@ and

!G. The correlator ~!@ contains the T-even operator com-
bination, while !G contains the T-odd operator combina-
tion. The latter is precisely the soft limit x1 ! 0 of a quark-
gluon correlator !Gðx; x1Þ of the type

!'
Gðx; x% x1Þ ¼ n"

Z dð$ # PÞ
2%

dð& # PÞ
2%

- eix1ð&#PÞeiðx%x1Þð$#PÞhPj ð0ÞUn
½0;&*g

-G"'ð&ÞUn
½&;$* ð$ÞjPicLC; (9)

The universal T-odd distribution functions in the parame-
trization of !Gðx; xÞ appear in T-odd observables such as
single spin asymmetries with the specific gluonic pole
factors from Eq. (8).
The situation for fragmentation functions is different.

The TMD fragmentation correlator depending on the col-
linear and transverse components of the quark momentum,
k ¼ 1

z Pþ kT þ !n, is given by [14,18]
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FIG. 4: The graphical representation of the quark-quark-gluon correlator ∆G in the case of fragmentation including besides
the parton a gluon with momentum k1 and the possible intermediate states (a) and (b) in a spectator model description.

As the effects of the component k− will appear suppressed by two powers of the hard scale as compared to the
collinear term, it is integrated over and one considers quark-quark correlators on the light-front (LF: ξ · n = 0)
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(2π)3
eik·ξ 〈P |ψj(0)U[0;ξ] ψi(ξ) |P 〉
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. (5)

The Wilson line or gauge link U[η;ξ] = Pexp
[

−ig
∫

C
ds·Aa(s) ta

]

is a path-ordered exponential along the integration
path C with endpoints at η and ξ. Its presence in the hadronic matrix element is required by gauge-invariance. In the
TMD correlator (5) the integration path C in the gauge link is process-dependent. In the diagrammatic approach the
Wilson lines arise by resumming all gluon interactions between the soft and the hard partonic parts of the hadronic
process [11, 20–22].

Collinear quark distribution functions are obtained from the TMD correlator after integration over pT ,

Φ(x) =

∫
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∫
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2π
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The nonlocality is restricted to the light-cone (LC: ξ ·n = ξT = 0) and the gauge link is unique, being the straight-line
path along n. In azimuthal asymmetries one needs the transverse moments contained in the correlator

Φα [U ]
∂ (x) =

∫

d2kT kα
T

Φ[U ](x,kT ) . (7)

The TMD correlator, expanded in distribution functions depending on x and k2
T

contains T-even and T-odd functions,
since the correlator is not T-invariant, which is attributed to the gauge link that depending on the process, accounts
for specific initial and/or final state interactions depending on the color flow in the process. For the collinear case,
the link structure becomes unique in the case of integration over kT (Eq. 6). For spin 0 and spin 1/2 the quark and
gluon correlators that appear at leading order in high energy processes contain only T-even operator combinations.
Evaluated between plane waves one only finds T-even functions depending on x in the parametrization.

For the collinear weighted case, the transverse moments in Eq. (7) one retains a nontrivial link-dependence that
prohibits the use of T-invariance as a constraint. It is possible, however, to decompose the weighted quark (and also
gluon) correlators as

Φα [U ]
∂ (x) = Φ̃α

∂ (x) + C [U ]
G πΦα

G(x, x), (8)

with calculable process-dependent gluonic pole factors C [U ]
G and process (link) independent correlators Φ̃∂ and ΦG.

The correlator Φ̃∂ contains the T-even operator combination, while ΦG contains the T-odd operator combination.
The latter is precisely the soft limit x1 → 0 of a quark-gluon correlator ΦG(x, x1) of the type
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to one-loop [33] performing a perturbative expansion on
the gauge link [24,25]. Extraction of the complete T-odd
gluonic pole contribution is difficult. Our approach, start-
ing directly with the color gauge-invariant multiparton
correlator (that is having resummed the gauge link [14])
has the advantage we can work with tree-level matrix
elements and just perform a spectral analysis to extract
the T-odd gluonic pole contributions.

In the next section we give details on the gluonic pole
matrix elements, followed by the spectator model ap-
proach. In the concluding section, we outline the short-
comings of our approach and also discuss possibilities to
use the approach for more detailed estimates for the T-odd
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kT . The Sudakov vector n is an arbitrary lightlike four-
vector n2 ¼ 0 that has nonzero overlap P # n with the
hadron’s momentum P. We will simply choose P # n ¼
1. In a hard process, the Sudakov vector incorporates the
presence of other momenta that are hard with respect to the
hadron under consideration, e.g. n $ P0=P # P0. We can
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As the effects of the component k% will appear sup-
pressed by two powers of the hard scale as compared to the
collinear term, it is integrated over and one considers
quark-quark correlators on the light-front (LF: $ # n ¼ 0)
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TheWilson line or gauge linkU½&;$* ¼ P exp½%igRC ds #
AaðsÞta* is a path-ordered exponential along the integration
path C with endpoints at & and $. Its presence in the
hadronic matrix element is required by gauge-invariance.
In the TMD correlator (5) the integration path C in the
gauge link is process-dependent. In the diagrammatic ap-
proach the Wilson lines arise by resumming all gluon
interactions between the soft and the hard partonic parts
of the hadronic process [14,34–36].

Collinear quark distribution functions are obtained from
the TMD correlator after integration over pT ,
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The TMD correlator, expanded in distribution functions
depending on x and k2T contains T-even and T-odd func-
tions, since the correlator is not T-invariant, which is
attributed to the gauge link that depending on the process,
accounts for specific initial and/or final-state interactions
depending on the color flow in the process. For the col-
linear case, the link structure becomes unique in the case of
integration over kT [Eq. (6)]. For spin 0 and spin 1=2 the
quark and gluon correlators that appear at leading order in
high energy processes contain only T-even operator com-
binations. Evaluated between plane waves one only finds
T-even functions depending on x in the parametrization.
For the collinear weighted case, the transverse moments

in Eq. (7) one retains a nontrivial link-dependence that
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The universal T-odd distribution functions in the parame-
trization of !Gðx; xÞ appear in T-odd observables such as
single spin asymmetries with the specific gluonic pole
factors from Eq. (8).
The situation for fragmentation functions is different.

The TMD fragmentation correlator depending on the col-
linear and transverse components of the quark momentum,
k ¼ 1

z Pþ kT þ !n, is given by [14,18]

L. P. GAMBERG, A. MUKHERJEE, AND P. J. MULDERS PHYSICAL REVIEW D 77, 114026 (2008)

114026-4

4

!
G 1
 (k,k!k )

P P

11
k!k k k

P

P

1 1

1

k!k P!k+k

k!P
k k

(a)

P

P

1 1

1

k

k!k

P!k

k!P

k

(b)
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the link structure becomes unique in the case of integration over kT (Eq. 6). For spin 0 and spin 1/2 the quark and
gluon correlators that appear at leading order in high energy processes contain only T-even operator combinations.
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Similarly unintegrated fragmentation there are in principle “two” types of gauge links
However more subtle!!! -Two types of T-odd effects

Reliability of Transversity Extraction Universality of Collins Fragmentation Function 

Revisit Gluonic Poles contributions-Fragmentation & Universality

(Gamberg, Mukherjee, Mulders PRD-2008)

• By contrast to one and two loop calcs. studying cuts we explore parton
correlator with one additional gluon taking the zero k±

1 → 0 limit; gluonic
pole matrix element/Efremov-Terayev-Qiu Sterman Matrix elements

• Gluonic Poles Identify the T-odd sources and possible non-universal or
process dependent contributions in PDFs and FFs
Boer, Pijlman, Mulders NPB 03, Bacchetta, Bomhof, Mulder, Pijlman PRD 05, Bomhof Mulders 07,
08, Bomhof, Mulders, Vogelsang, Yuan PRD 07.
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• In doing so we investigated the “reciprocity” btwn distrb. and frag. functions x → 1/z
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Diagrammatic Factorization

• Adopt picture diagrammatic factorization Politzer NPB 80, Ellis et al. NPB 82 restricts
hadrons well sep. in momentum space P · Ph ∼ pi · pj ∼ Q2 and P · pi ∼ M2

Each hadron described by “Sudakov” light-like vector
n such that

p = xP + σn + pT − incoming particle,

k =
K

z
+ σhnh + kT − outgoing particle

. . .

. . .

k

p

P

K

Φ

∆

• SIDIS factorized into distribution Φ future pointing [+]
fragmentation ∆ correlators past pointing [−]

Φ[+](x, pT ) =
∫ dξ−d2ξT
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Ph1⊥

Ph2⊥

FIG. 1: Definition of the azimuthal angles of the two hadrons.
In each case, φi is the angle between the plane spanned by the
lepton momenta and the thrust axis n̂, and the plane spanned
by n̂ and the hadron transverse momentum Phi⊥.

culations using reconstructed and generated tracks shows
an average angular deviation between the two of 75 mrad,
with a spread with root mean square of 74 mrad. This
smearing of the reconstructed axis leads to a reduction in
the measured azimuthal asymmetry, as discussed below.

Two experimental methods are used to measure az-
imuthal asymmetries. The first method (M12) gives rise
to the cos(φ1 + φ2) modulation in the di-hadron yields.
The yield is recorded as a function of the hadron angle
sum φ1+φ2, N12 = N12(φ1+φ2), and divided by the aver-
age yield to obtain the normalized rate R12 := N12(φ1 +
φ2)/〈N12〉, parametrized by R12 = a12 cos(φ1 +φ2)+ b12.

Here, a12 is a function of the first moment (H⊥q,[1]
1 ) of

the Collins function [10]

a12(θ, z1, z2) =
sin2 θ

1 + cos2 θ

H⊥q,[1]
1 (z1)H

⊥q,[1]
1 (z2)

Dq
1(z1)D

q

1(z2)
, (2)

where θ is the angle between the incoming lepton axis
and the thrust axis. An alternative method (M0) does
not rely on knowledge of the thrust axis: yields are mea-
sured as a function of φ0, the angle between the plane
spanned by the momentum vector of the first hadron and
the lepton momenta, and the plane defined by the two
hadron momenta. The corresponding normalized rate
R0 = N0(2φ0)/〈N0〉 is a function of cos(2φ0), and (fol-
lowing [11]) can be parametrized as a0 cos(2φ0)+ b0 with

a0(θ2, z1, z2) =
sin2 θ2

1 + cos2 θ2

f
(

H⊥q
1 (z1)H

⊥q

1 (z2)/M1M2

)

Dq
1(z1)D

q

1(z2)
.

(3)
f denotes convolution over the transverse hadron mo-
menta. M1 and M2 are the masses of the two hadrons, z1

and z2 are their fractional energies and θ2 is the angle be-
tween the beam axis and the second hadron momentum.
The sin θ2 dependence reflects the probability of finding
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FIG. 2: Top: Unlike(U)-sign and like(L)-sign pion pair nor-
malized rate R0 vs. 2φ0 in the bin z1(z2) ∈ [0.5, 0.7], z2(z1) ∈
[0.3, 0.5]. Bottom: Pion pair double ratio RU

0 /RL
0 vs. 2φ0 in

the same bin. The solid and slashed lines show the results of
the fit described in the text.

the two initial quarks with transverse spin. D
q

1(z) and

H
⊥q

1 denote fragmentation functions for anti-quarks.

To reduce hard gluon radiation, a two-jet-like topology
is enforced by requiring a thrust value T > 0.8, calcu-
lated from all charged and neutral particles with momen-
tum exceeding 0.1 GeV/c. The following selection criteria
were imposed on the charged pions used in the analysis
methods M12 and M0: (1) Tracks are required to origi-
nate from the collision vertex, and to lie in a fiducial re-
gion −0.6 < cos(θlab) < 0.9, where θlab is the polar angle
in the laboratory frame. (2) A likelihood ratio is used to
separate pions from kaons [5]: L(π)/[L(K)+L(π)] > 0.7.
MC studies show that less than 10% of pairs have at least
one particle misidentified. (3) We require z1, z2 > 0.2, to
reduce decay contributions to the pion yields. In ad-
dition we require the visible energy in the detector to
exceed 7 GeV. (4a) The tracks must lie in opposite jet-
hemispheres: (Ph1 ·n̂)(Ph2 ·n̂) < 0. (4b) QT is the trans-
verse momentum of the virtual photon from the e+e− an-
nihilation in the rest frame of the hadron pair [11]. We
require QT < 3.5 GeV/c, which removes contributions
from hadrons assigned to the wrong hemisphere.

The analysis is performed in (z1, z2) bins with bound-
aries at zi = 0.2, 0.3, 0.5, 0.7 and 1.0, where complemen-
tary off-diagonal bins (z1, z2) and (z2, z1) are combined.
In each (z1, z2) bin, normalized rates R12 and R0 are eval-
uated in 8 bins of constant width in the angles φ1 + φ2

and 2φ0 respectively, and fitted with the functional form
introduced above. Results in the lowest (z1, z2) bin are
shown in Fig. 2. In both methods the constant term (b12

or b0) is found to be consistent with unity for all bins.

In addition to their sensitivity to the Collins effect, R12

and R0 have contributions from instrumental effects and
QCD radiative processes: these are charge independent,

Ralf Seidl EIC Workshop, 
Hampton, VA May 08

Belle KEKB measurement of the Collins 
Frag. Function  PRL 2006 & arXiv:0805.2975

Reliability of Transversity Extraction Universality of Collins Fragmentation Function 
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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Fig. 1. Tree-level diagram for quark to meson fragmentation process.

from gluons. We do not want to promote the specific elements of the model as the “truth”. In fact, it is not unreasonable to expect
that the dynamical mechanism of gluon final-state interactions can be applied also in other models, leading to results similar to
ours. In the future, calculations based on such mechanism might be made more rigorous within a QCD framework.

We also present, for the first time, the Collins function for the fragmentation of quarks into kaons. This calculation is relevant
for the interpretation of recent kaon measurements done at HERMES [16] as well as COMPASS [17] and for future measurements
at BELLE and JLab.

2. Model calculation of the unpolarized fragmentation function

In the fragmentation process, the probability to produce hadron h from a transversely polarized quark q , in, e.g., the qq̄ rest
frame if the fragmentation takes place in e+e− annihilation, is given by (see, e.g., [18])

(1)Dh/q↑
(
z,K2

T

)
= D

q
1

(
z,K2

T

)
+ H

⊥q
1

(
z,K2

T

) (k̂ × KT ) · sq

zMh
,

where Mh the hadron mass, k is the momentum of the quark, sq its spin vector, z is the light-cone momentum fraction of the hadron
with respect to the fragmenting quark, and KT the component of the hadron’s momentum transverse to k. D

q
1 is the unintegrated

unpolarized fragmentation function, while H
⊥q
1 is the Collins function. Therefore, H

⊥q
1 > 0 corresponds to a preference of the

hadron to move to the left if the quark is moving away from the observer and the quark spin is pointing upwards.
In accordance with factorization, fragmentation functions can be calculated from the correlation function [19]

(2)!(z, kT ) = 1
2z

∫
dk+ !(k,Ph) = 1

2z

∑

X

∫
dξ+ d2ξT

(2π)3 eik·ξ 〈0|Un+
(+∞,ξ)ψ(ξ)|h,X〉〈h,X|ψ̄(0)Un+

(0,+∞)|0〉
∣∣
ξ−=0,

with k− = P −
h /z. A discussion on the structure of the Wilson lines, U , can be found in Ref. [19]. Here, we limit ourselves to

recalling that in Refs. [20,21] it was shown that the fragmentation correlators are the same in both semi-inclusive DIS and e+e−

annihilation, as was also observed earlier in the context of a specific model calculation [20] similar to the one under consideration
here. In the rest of the article we shall utilize the Feynman gauge, in which transverse gauge links at infinity give no contribution
and can be neglected [22–24].

The tree-level diagram describing the fragmentation of a virtual (timelike) quark into a pion/kaon is shown in Fig. 1. In the
model used here, the final state |h,X〉 is described by the detected pion/kaon and an on-shell spectator, with the quantum numbers
of a quark and with mass ms . We take a pseudoscalar pion–quark coupling of the form gqπγ5τi , where τi are the generators of
the SU(3) flavor group. Our model is similar to the ones used in, e.g., Refs. [25–28]. The most important difference from previous
calculations that included also the Collins function, i.e., those in Refs. [8–12], is that the mass of the spectator ms is not constrained
to be equal to the mass of the fragmenting quark.

The fragmentation correlator at tree level, for the case u → π+, is

(3)!(0)(k,p) = −
2g2

qπ

(2π)4

(/k + m)

k2 − m2 γ5(/k − /P h + ms)γ5
(/k + m)

k2 − m2 2πδ
(
(k − Ph)

2 − m2
s

)

and, using the δ-function to perform the k+ integration,

(4)!(0)(z, kT ) =
2g2

qπ

32π3

(/k + m)(/k − /P h − ms)(/k + m)

(1 − z)P −
h (k2 − m2)2

,

where k2 is related to k2
T through the relation

(5)k2 = zk2
T /(1 − z) + m2

s /(1 − z) + M2
h/z,

which follows from the on-mass-shell condition of the spectator quark of mass ms . We take m to be the same for u and d quarks,
but different for s quarks. Isospin and charge-conjugation relations imply

(6)Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,

Sensitivity to pT ∼ k⊥ <<
√

Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron
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• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron
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Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)
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Spect. model workbench ISI/FSI in AA & TMDs h⊥
1 , f⊥

1T , H⊥
1 gluonic poles

• /∃ calculation Quark-Quark Correlator in Full QCD

Φ[U [C]](x, pT ) =

Z
dξ−d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]
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ξ+=0

• Use Spectator Framework Develop a QFT to explore and estimates these effects with gauge links

$ BHS FSI/ISI Sivers fnct, -PLB 2002, NPB 2002
$ Ji, Yuan PLB 2002 - Sivers Function
$ Metz PLB 2002 - Collins Function
$ L.G. Goldstein, 2002 ICHEP- Boer Mulders Function
$ L.G. Goldstein, Oganessyan TSSA & AAS PRD 2003-SIDIS
$ Boer Brodsky Hwang PRD 2003-Drell Yan Boer Mulders
$ Bacchetta Jang Schafer 2004- PLB, Flavor-Sivers, Boer Mulders
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Z
dξ−d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]
ψ(ξ−, ξT )|P 〉|

ξ+=0
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Mechanisms explored thru T-odd Contribution SIDIS and Drell Yan

Impacts pre and “post”-dictions at COMPASS, HERMES, JLAB 6 & 12 GeV FAIR, RHIC, JPARC

cos 2φ Asymmetry in SIDIS-“Boer Mulders Effect”

" Early wk. in spectator framework Goldstein, L.G., ICHEP 2002; hep-ph/0209085 L.G., Goldstein,

Oganessyan, PRD 2003, Boer Brodsky Hwang, PRD 2003

h⊥(s)
1 (x, k⊥) = f⊥(s)

1T (x, k⊥)

i
!++iε

+

−i
!+−iε

• Collins, Sivers and Boer Mulders Asymmetries with Gaussian Distribution
in k⊥ L.G., Goldstein, Oganessyan, PRD 67 (2003)

h⊥
1 (x, k⊥) = αsNs

M(m + xM)(1 − x)

k2
⊥Λ(k2

⊥)
R(k2

⊥, x)



Revisit Gluonic Poles contributions-Fragmentation & Universality

(Gamberg, Mukherjee, Mulders PRD-2008)

• By contrast to one and two loop calcs. studying cuts we explore parton
correlator with one additional gluon taking the zero k±

1 → 0 limit; gluonic
pole matrix element/Efremov-Terayev-Qiu Sterman Matrix elements

• Gluonic Poles Identify the T-odd sources and possible non-universal or
process dependent contributions in PDFs and FFs
Boer, Pijlman, Mulders NPB 03, Bacchetta, Bomhof, Mulder, Pijlman PRD 05, Bomhof Mulders 07,
08, Bomhof, Mulders, Vogelsang, Yuan PRD 07.

Φ
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∂ (x) =
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d2kT kα

T Φ[U ](x,kT ) = Φ̃α
∂ (x) + C

[U ]
G πΦα

G(x, x)

∆
α [U ]
∂ (z) =

Z
d2kT kα

T ∆[U ](z, kT ) = ∆̃α
∂

“
1
z

”
+ C

[U ]
G π∆α

G

“
1
z, 1

z

”
.

• In doing so we investigated the “reciprocity” btwn distrb. and frag. functions x → 1/z
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“Gluonic Poles” & Gauge Link for T -Odd Collins Function “some history”

∆[σ⊥−γ5](z, k⊥) = 1
4z

R
dk+Tr(γ−γ⊥γ5∆)

˛̨
˛
k−=P−

π /z
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Eikonal Feynman Rules Collins ′82′
i

!−− iε
−i

!−+ iε

• Motivation: color gauge .inv frag. correlator “pole contribution”

• Gribov-Lipatov Reciprocity 1974, Mulders et al. 1990s for T -even Fragmentation.
Applied to T -odd Fragmentation L.G.,Goldstein,Oganessyan PRD68,2003

$ Metz 2002 PLB to 1-loop-same sign H⊥
1 for e+e− and SIDIS: result, implies universality preserved

$ Collins Metz PRL 2004 demonstrate to universality in “spectator field theory”

$ Basis for cut method and pheno. Bacchetta, Metz, Yang, PLB 2003, Amrath Bacchetta, Metz : PRD
2005, Bacchetta, L.G. Goldstein, Mukherjee PLB 2008

$ Reciprocity Fails, “T-odd” Fragmentation Function Universal between e+e− and SIDIS to one loop.

$ Yuan, PRL 2008 Universality to two loops of fragmentation in azimuthal distr. of hadrons in a
high energy jet p p↑



Spectral Analysis Gluonic Poles-Fragmentation

• In this approach rather than integrating over the longitudinal component
of the “loop momenta” we look at the limit of a zero gluon momentum
in quark-gluon-quark matrix element, Qiu Sterman matrix element

• We calculate them by considering the multi-parton correlators
ΦG(k, k − k1) and ∆G(k, k − k1) in light-cone gauge
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∆α
G ij (x, x − x1) =

∑

X

∫
d(ξ·P )

2π

d(η·P )
2π

ei x1(η·P )ei (x−x1)(ξ·P )

× 〈0|Un
[0,η] gGnα(η)Un

[η,ξ]ψi(ξ)|P,X〉

×〈P,X |ψj(0)|0〉

∣∣∣∣∣
LC

.

. . .



Calculate the Weighted Frag. correlator

• The T-odd operator-combination that appears in the transverse moment,

∆α
∂(z; n, C) =

Z
d2kTkα

T∆(x, kT ; n, C) = ∆̃α
∂(z) + π∆α

G(z)

yields the gluonic pole matrix element which is characterized by the
difference of the transverse gluon field at ±∞,

∆α
G ij(z; n, C) =

X

X

Z
d(ξ · Ph)

2π
eik·ξ〈0| (Aα

T(∞) − Aα
T(−∞))

×ψi(ξ)|Ph, X〉〈Ph, X|ψ̄j(0)|0〉

˛̨
˛̨
˛
ξ·nh=ξT =0

where

Aα
T (∞) − Aα

T (−∞) =
∫ ∞

−∞
d(η · Ph)Gnhα(η)

∣∣∣
η·nh=ηT=0

.



The Gluonic Pole Matrix Element for Fragmentation:
Based on notes written up at WHEPP-X, Chennai, India,

Jan. 12, 2008

1 The gluonic pole matrix element

The expression for the transverse momentum dependent (TMD) fragmentation correlator is [1]

∆ij(z, kT ; n, C) =
∑

X

∫ d(ξ · Ph)d2ξ

2π3
eik·ξ〈0|U [n,C]

[a,ξ] ψi(ξ)|Ph, X〉〈Ph, X|ψ̄j(0)U [n,ξ]
[0,a] |0〉|ξ·nh=0 . (1)

The T-odd operator-combination that appears in the transverse moment,

∆α
∂ (z; n, C) =

∫

d2kTkα
T ∆(x, kT ; n, C) = ∆̃α

∂ (z) + π∆α
G(z) (2)

results in the gluonic pole matrix element which is characterized by the difference of the transverse
gluon field at ±∞,

π∆α
G ij(z;n,C) =

∑

X

∫

d(ξ · Ph)

2π
eik·ξ〈0| (Aα

T (∞) − Aα
T (−∞)) ψi(ξ)|Ph,X〉〈Ph,X|ψ̄j(0)|0〉

∣

∣

∣

∣

∣

ξ·nh=ξT =0

(3)

where

Aα
T (∞) − Aα

T (−∞) =
∫ ∞

−∞
d(η · Ph)G

nhα(η)
∣

∣

∣

η·nh=ηT =0
. (4)

We demonstrate that this term vanishes in the spectator framework while the analogous term for
TMD PDFs does not.

In momentum space this becomes

∆G(x, x − x1) →
∫

dk+d2kTdk+
1 d2k1T δ((k − Pπ)2 − µ2)

×Tr

[

i(k/ + m)γ5i(k/ − Pπ/ + µ)γαi(k/ − k/1 − Pπ/ + µ)γ5i(k/ − k/1 + m)

]

×
F ′

1(k
2, (k − Pπ)2)

k2 − m2 + iε

F ′
2(k

2
1, k · k1, k2)

(k2
1 − λ2 + iε)((k − k1 − Pπ)2 − µ2 + iε)

F ′
1((k − k1)2, (k − k1 − Pπ)2)

((k − k1)2 − m2 + iε)
.(5)

as describe in Fig. 1. We express the momenta in light-cone coordinates,

k =

(

xQ√
2
, k+, kT

)

, where k+ =
k2 + k2

T√
2xQ

k1 =

(

x1Q√
2

, k+
1 , k1T

)

Pπ =

(

Q√
2
,

M2

√
2Q

)

. (6)

1

k1
kk − k1

Pπ

Figure 1: The Feynman diagram representing the gluonic pole matrix element.

We can simplify the Dirac structure of the numerator i(k/ − Pπ/ + µ) and i(k/ − k/1 − Pπ/ + µ) to
⇒ i(Pπ/ − µ) such that only hadron momenta enter the trace (see Mulders notes [2]) since the
vanishing of

lim
x1→0

∆α
G(x, x − x1)

is independent of the trace calculation. To demonstrate this we consider the following integral,

I(x, k+, kT ; x1, k1T )

=
1

(k2 − m2 + iε)

∫ dk+
1

(k2
1 − λ2 + iε)

1

((k − k1 − Pπ)2 − µ2 + iε)

1

((k − k1)2 − m2 + iε)

=
1

4Q4xx1(x − x1)(x − x1 − 1)

1
(

k+ − k2

T
+m2−iε
√

2xQ

)

×
∫ dk+

1
(

k+
1 − k2

1T
+λ2−iε

√
2x1Q

)

1
(

k+
1 −

(

k+ + (k−k1)T )2+m2−iε√
2(x1−x)Q

))

1
(

k+
1 −

(

k+ − P+
π +

(k−k1)2T +µ2−iε
√

2(x1−(x−1))Q

))

(7)

which can be written in the following form for the purposes of evaluating it in the complex k+
1

plane

I(x, k+, kT ; x1, k1T ) =
1

4Q4xx1(x − x1)(x − x1 − 1)

1
(

k+ − k2

T
+m2−iε
√

2xQ

)

×
1

C3 − C2

∫

dk+
1

(

1

k+
1 − C1

1

k+
1 − C3

−
1

k+
1 − C1

1

k+
1 − C2

)

, (8)

where we define

C0 =
k2

1T + m2 − iε√
2xQ

,

C1 =
k2

1T + λ2 − iε√
2x1Q

,

C2 =

(

k+ − P+
π +

(k − k1)2
T + µ2 − iε√

2(x1 − (x − 1))Q

)

,

2

Straightforward Integration

ΦG(x, x1 − x) ∼
1

(k2 − m2)

(Z dk−1
2π i

F1

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k + k1)2 − M2
s1 + iε)

+

Z dk−1
2π i

F2

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k1)2 − M2
s2 + iε)

)

where, Fi

(
k−
1 , x, x1, k2

T , k2
1T

)
contain numerators and vertex functions

• Assume numerator doesn’t grow with k−
1 can perform k−

1 integrations

Θm
n1n2...(x1, x2, . . .) =

∫
dα

2π i

αm

(αx1 − 1 + iε)n1(αx2 − 1 + iε)n2 . . .
,

• Take x1 → 0 we get gluonic pole correlators, distribution and (0 ≤ x ≤ 1)
and Fragmentation functions (x = 1/z ≥ 1)

∆G(x, x) = 0 and ΦG(x, x) %= 0

k+
1

C3 if x1 < x

C1 if x1 > 0

Im(k+
1 )

x1
x0

Figure 2: Displaying the pole structure in Eq. 8, we get a non-zero result if x > x1 > 0. Closing
the contour as shown results in the theta function θ(x − x1)θ(x1) in Eq. 10.

C3 =

(

k+ +
(k − k1)2

T + m2 − iε√
2(x1 − x)Q

)

. (9)

Assuming that there is sufficient damping of the integrand as a function of the complex variable
k+

1 on the semi-circle, so that
∮

dk+
1 (. . .) =

∫ ∞
−∞(. . . ) we can evaluate the integral in Eq. 8 using

Cauchy’s theorem. Consider

1

2πi

∮

dk+
1

1

k+
1 − C1

1

k+
1 − C3

=

√
2Qxx1(x1 − x)θ(x − x1)θ(x1)

x(x1 − x)k2
1T − x1(x1 − x)(k2 + k2

1T ) − xx1 ((k − k1)2
T + m2)

(10)

1

2πi

∮

dk+
1

1

k+
1 − C1

1

k+
1 − C2

=

√
2Qx1(x − 1)(x1 − (x − 1))θ(x − 1 − x1)θ(x1)

(x1 − (x − 1))(x − 1)k2
1T − x1(x1 − (x − 1))(k2

1T + µ2) − x1(x − 1) ((k − k1)2
T + µ2)

,(11)

where in Eq.11 I used

k − Pπ =
k2

1T + µ2

√
2Q(x − 1)

. (12)

Also note,

1

C3 − C2
=

√
2Q(x1 − x)(x − 1)(x1 − (x − 1))

(x1 − (x − 1))((k − k1)2T + m2) + (x1 − x)(x1 − (x − 1))M2 − (x1 − x)
(

(k − k1)2T + µ2
)

(13)

Now in the limx1→0 I(x, k+, kT ; x1, k1T ) we obtain,

I(x, k+, kT ; x1, k1T )=
ıπ

Q2

1

k+ − C0

(

1

−(x − 1)((k − k1)2
T + m2) + x(x − 1)M2 + x((k − k1)2

T + µ2)

)

×
{

θ(x)θ(0)

xk2
1T

−
θ(x − 1)θ(0)

xk2
1T

}

. (14)

3
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2π i

F1

“
k−1 , x, x1, kT , k1T
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(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k + k1)2 − M2
s1 + iε)

+

Z dk−1
2π i

F2

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k1)2 − M2
s2 + iε)
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(
k−
1 , x, x1, k2

T , k2
1T

)
contain numerators and vertex functions

• Assume numerator doesn’t grow with k−
1 can perform k−
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Θm
n1n2...(x1, x2, . . .) =

∫
dα

2π i

αm

(αx1 − 1 + iε)n1(αx2 − 1 + iε)n2 . . .
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!½U"
ij ðz; kTÞ ¼

X

X

Z dð! & PhÞd2!T
ð2"Þ3

' eik&!h0jU½0;!" ið!ÞjP; XihP; Xj " jð0Þj0ijLF:
(10)

The collinear, kT-integrated correlator

!ðzÞ ¼
Z
d2kT!

½U"ðz; kTÞ

¼
X

X

Z dð! & PÞ
2"

eiz
(1ð!&PÞh0jUn

½0;!" ið!ÞjP; Xi

' hP; Xj " jð0Þj0ijLC; (11)

only contains a T-even operator combination. Nevertheless
one could in principle have T-even and T-odd fragmenta-
tion functions depending on z since the hadronic state
jP; Xi is an out-state, which is not T-invariant. For spin 0
and spin 1=2 hadrons no T-odd function appear at leading
twist because of other constraints. At subleading twist they
do appear [37].

In the transverse moments obtained after kT-weighting,

!#½U"
@ ðzÞ ¼

Z
d2kTk

#
T!

½U"ðz; kTÞ

¼ ~!#
@

!
1

z

"
þ C½U"

G "!#
G

!
1

z
;
1

z

"
: (12)

the two link independent correlators ~!@ and !G contain
again a T-even and T-odd operator combination, respec-
tively. The gluonic pole correlator is again the soft limit,
z(1
1 ¼ x1 ! 0, of the quark-gluon correlator

!#
Gijðx; x( x1Þ ¼

X

X

Z dð! & PÞ
2"

dð$ & PÞ
2"

' eix1ð$&PÞeiðx(x1Þð!&PÞh0jUn
½0;$"g

'Gn#ð$ÞUn
½$;!" ið!ÞjP; Xi

' hP; Xj " jð0Þj0i
########LC

: (13)

Because of the appearance of hadronic states jP; Xi, each
of correlators in Eq. (12) contains in principle T-even and
T-odd functions. Rather than having a doubling of T-odd
functions, we will show in a spectator model approach that
!Gðx; xÞ ¼ 0, which implies that T-odd fragmentation
functions in the transverse moments only come from ~!@,
which appear with a universal strength (no gluonic pole
factors). We will show this in a spectator approach starting
with the collinear quark-gluon correlators in Eqs. (9) and
(13) rather than the model approaches [23–32] that looked
at the transverse momentum dependent quark correlators in
Eqs. (5) and (10).

III. THE SPECTATOR MODEL APPROACH

In a typical spectator model approach to distribution or
fragmentation correlators one considers a spectator with
massMs. The result for the cut, but untruncated, diagrams,
such as in Figs. 1 and 2 are of the form

#ðx; kTÞ *
Z
dðk & PÞ Fðk2; k & PÞ

ðk2 (m2 þ i%Þ2 &ððk( PÞ2 (M2
s Þ;

(14)

where Fðk2; k & PÞ contains the numerators of propagators
and/or traces of them in the presence of Dirac Gamma
matrices, as well as the vertex form factors (see for ex-
ample [38]). The explicit momenta, using light-cone coor-
dinates ½p(; pþ; pT" as discussed in the beginning of the
previous section, are

P ¼
$
M2

2
; 1; 0T

%
; (15)

P( k ¼
$
M2
s ( k2T

2ð1( xÞ ; 1( x;(kT
%
; (16)

k ¼
$ð1( xÞM2 (M2

s þ k2T
2ð1( xÞ ; x; kT

%
: (17)

In the above the delta function constraint in Eq. (14) has
been implemented. One finds that the numerator Fðk2; k &
PÞ ¼ Fðx; k2TÞ and hence

#ðx; kTÞ *
ð1( xÞ2Fðx; kTÞ
ð'2ðxÞ ( k2TÞ2

; (18)

with

'2ðxÞ ¼ xM2
s þ ð1( xÞm2 ( xð1( xÞM2: (19)

Note that k2T ¼ (k2T + 0. The details of the numerator
function depend on the details of the model, including
the vertices, polarization sums, etc. These must be chosen
in such a way as to not produce unphysical effects, such as
a decaying proton ifM , mþMs, thusm in Eq. (14) must
represent some constituent mass in the quark propagator,
rather than the bare mass. The useful feature of the result in
Eq. (18) is its ability to produce reasonable valence and
even sea quark distributions using the freedom in the model
connected to an intuitive picture. The results for the frag-
mentation function in the spectator model is identical upon
the substitution of x ¼ 1=z.
Next we turn to the same spectral analysis of the gluonic

pole correlator using the picture given in Figs. 3 for distri-
bution functions and the picture given in Figs. 4 for frag-
mentation functions. Again, we only need to investigate
one of the cases. We parametrize the gluon momentum as

k1 ¼ ½k(1 ; x1; k1T"; (20)
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Parameterize  gluon momentum

where k!1 ¼ k1 # P! 1
2 x1M

2 will be the first component to be integrated over. The relevant momenta (implementing the
on-shell condition for P! k) are

k! k1 ¼
!
!k!1 þ ð1! xÞM2 !M2

s þ k2T
2ð1! xÞ ; x! x1; kT ! k1T

"
; (21)

P! kþ k1 ¼
!
k!1 þM2

s ! k2T
2ð1! xÞ ; 1! xþ x1;!kT þ k1T

"
; (22)

P! k1 ¼
!
!k!1 þM2

2
; 1! x1;!k1T

"
: (23)

The basic result for the quark-gluon correlators !Gðx; x! x1; kT; kT ! k1TÞ becomes

!G ' 1

ðk2 !m2Þ

#Z dk!1
2!i

F1ðk!1 ; x; x1; kT; k1TÞ
ðk21 !m2

1 þ i"Þððk! k1Þ2 !m2 þ i"ÞððP! kþ k1Þ2 !M2
s1 þ i"Þ

þ
Z dk!1

2!i

F2ðk!1 ; x; x1; kT; k1TÞ
ðk21 !m2

1 þ i"Þððk! k1Þ2 !m2 þ i"ÞððP! k1Þ2 !M2
s2 þ i"Þ

$

' 1! x

ð#2 ! k2TÞ

#Z dk!1
2!i

F1ðk!1 ; x; x1; k2T; k21TÞ
ðx1k!1 ! A1 þ i"Þððx1 ! xÞk!1 ! A2 þ i"Þðð1! xþ x1Þk!1 ! B1 þ i"Þ

þ
Z dk!1

2!i

F2ðk!1 ; x; x1; k2T; k21TÞ
ðx1k!1 ! A1 þ i"Þððx1 ! xÞk!1 ! A2 þ i"Þððx1 ! 1Þk!1 ! B2 þ i"Þ

$
; (24)

where, as before, Fiðk!1 ; x; x1; k2T; k21TÞ contain numerators
and vertex functions [24,25]. We use the quantities,

2A1 ¼ m2
1 ! k21T; (25)

2A2 ¼m2 !ðx! x1ÞM2 þ x! x1
1! x

ðM2
s ! k2TÞ! ðkT ! k1TÞ2;

(26)

2B1 ¼ M2
s1 !

1! xþ x1
1! x

ðM2
s ! k2TÞ ! ðkT ! k1TÞ2;

(27)

2B2 ¼ M2
s2 ! ð1! x1ÞM2 ! k21T: (28)

These quantities depend on spectator masses, momentum
fractions (x and x1), and the transverse momenta (kT and
k1T). Besides the spectator mass Ms, two additional spec-
tator massesMs1 andMs2 appear [see Figs. 3(b) and 3(c) or

Figs. 4(b) and 4(c) and compare with the starting expres-
sion in Eq. (24)]. The quantity #2 is the same one as given
in Eq. (19).
In order to obtain the full result for !Gðx; x! x1Þ and

the required symmetry properties [2,39] one of course must
add the Hermitian conjugate contributions. Including
these, the symmetry conditions in the limit x1 ! 0 leave
for!Gðx; xÞ only the T-odd parts nonzero. In our case these
same symmetry properties also hold for "G although these
in principle could be spoiled by phases in the final state,
jP; k! Pi ! jPi ( jk! Pi. These symmetry considera-
tions are not essential for our purposes and we continue
with the evaluation of Eq. (24). Assuming that the numera-
tor does not grow with k!1 one can easily perform the k!1
integrations. We will for simplicity assume that the Fi are
independent of k!1 , in which case we obtain for x ) x1 ) 0
(see Appendix),

!Gðx;x! x1Þ ¼
Z

d2kTd
2k1T

# ð1! xÞF1ðx;x1; kT; k1TÞ
ð#2 ! k2TÞðxA1 þ x1ðA2 !A1ÞÞðx1ðB1 !A2Þ! xB1 !ð1! xÞA2Þðð1! xÞA1 þ x1ðA1 !B1ÞÞ

* ½ðx1ðB1 !A2Þ! xB1 !ð1! xÞA2Þx1$ðx1Þþ ðð1! xÞA1 þ x1ðA1 !B1ÞÞðx1 ! xÞ$ðx1 ! xÞ
þ ðxA1 þ x1ðA2 !A1ÞÞð1! xþ x1Þ$ð1! xþ x1Þ,

þ ð1! xÞF2ðx;x1; kT; k1TÞ
ð#2 ! k2TÞðxA1 þ x1ðA2 !A1ÞÞðA2 ! xB2 þ x1ðB2 !A2ÞÞðx1ðA1 !B2Þ!A1Þ

* ½ðA2 ! xB2 þ x1ðB2 !A2ÞÞx1$ðx1Þþ ðx1ðA1 !B2Þ!A1Þðx1 ! xÞ$ðx1 ! xÞ

þ ðxA1 þ x1ðA2 !A1ÞÞðx1 ! 1Þ$ðx1 ! 1Þ,
$

(29)
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fractions (x and x1), and the transverse momenta (kT and
k1T). Besides the spectator mass Ms, two additional spec-
tator massesMs1 andMs2 appear [see Figs. 3(b) and 3(c) or

Figs. 4(b) and 4(c) and compare with the starting expres-
sion in Eq. (24)]. The quantity #2 is the same one as given
in Eq. (19).
In order to obtain the full result for !Gðx; x! x1Þ and

the required symmetry properties [2,39] one of course must
add the Hermitian conjugate contributions. Including
these, the symmetry conditions in the limit x1 ! 0 leave
for!Gðx; xÞ only the T-odd parts nonzero. In our case these
same symmetry properties also hold for "G although these
in principle could be spoiled by phases in the final state,
jP; k! Pi ! jPi ( jk! Pi. These symmetry considera-
tions are not essential for our purposes and we continue
with the evaluation of Eq. (24). Assuming that the numera-
tor does not grow with k!1 one can easily perform the k!1
integrations. We will for simplicity assume that the Fi are
independent of k!1 , in which case we obtain for x ) x1 ) 0
(see Appendix),
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Straightforward Integration

ΦG(x, x1 − x) ∼
1

(k2 − m2)

(Z dk−1
2π i

F1

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k + k1)2 − M2
s1 + iε)

+

Z dk−1
2π i

F2

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k1)2 − M2
s2 + iε)

)

where, Fi

(
k−
1 , x, x1, k2

T , k2
1T

)
contain numerators and vertex functions

• Assume numerator doesn’t grow with k−
1 can perform k−

1 integrations

Θm
n1n2...(x1, x2, . . .) =

∫
dα

2π i

αm

(αx1 − 1 + iε)n1(αx2 − 1 + iε)n2 . . .
,

• Take x1 → 0 we get gluonic pole correlators, distribution and (0 ≤ x ≤ 1)
and Fragmentation functions (x = 1/z ≥ 1)

∆G(x, x) = 0 and ΦG(x, x) %= 0



Taking the limit x1 ! 0we get the gluonic pole correlators,
for distribution functions (0 ! x ! 1),

!Gðx;xÞ ¼%
Z

d2kTd
2k1T

ð1% xÞF1ðx;0; kT; k1TÞ!ð1% xÞ
ð"2 % k2TÞðxB1 þð1% xÞA2ÞA1

;

(30)

and for fragmentation functions (x ¼ 1=z ' 1)

"Gðx; xÞ ¼ 0: (31)

We note that this result depends on the assumption that the
numerator does not grow with k%1 . If this is the case one
would find integrals of the type #1

111 (also given in the
Appendix) rather than those of the type #0

111 and one does
not get the required x1!ðx1Þ behavior in the calculation. In
models, terms proportional to k%1 ( k1 ) Pmay easily arise
from numerators of fermionic propagators [32,40] which in
turn may easily be suppressed by form factors at the
vertices. To prove a proper behavior within QCD one
would need to study the fully unintegrated correlators
such as e.g. in Ref. [41] and show that they fall off
sufficiently fast as a function of k1 ) P.

IV. CONCLUSIONS

In this work, we have investigated the gluonic pole
contributions to the distribution and fragmentation func-
tions. Instead of doing a quantitative analysis involving
details of a phenomenological model, we limit ourselves to
a spectral analysis within the spectator framework, in order
to understand the basic features of these quantities. The
advantage is that we are able to investigate only the soft
parts at tree level and take the zero-momentum limit of the
gluon involved. We simply assume that masses and verti-
ces do not spoil our analysis, which implies limits on the
mass distributions of the spectators, use of vertices that
cancel the bare-mass poles in the quark and gluon propa-
gators and behavior of vertices that assures sufficient con-
vergence of integrations. We find that under realistic
assumptions, the gluonic pole contributions for fragmenta-
tion correlators vanish whereas these contributions do not

vanish for distribution correlators. The result for fragmen-
tation correlators at nonzero gluon momentum is nonzero.
We stress that this certainly is not yet the full proof that
gluonic pole matrix elements vanish in the case of frag-
mentation. However, we consider this analysis as a step
towards such a proof and the possible direction to obtain
such a proof by only considering the appropriate color
gauge-invariant soft matrix elements. Such a proof is im-
portant as it eliminates a whole class of matrix elements
parametrized in terms of T-odd fragmentation functions
besides the T-odd fragmentation functions in the parame-
trization of the two-parton correlators. For instance, only
one of the contributions to the spin asymmetries considered
for jet-hyperon production in Ref. [42] remains. Moreover,
the remaining fragmentation functions appear with the
standard partonic cross section, so no gluonic pole cross
sections need to be considered for fragmenting final-state
partons, limiting these considerations to the distribution
functions involving initial-state partons.
As mentioned, the results in this paper may point the

way to finding a full proof of "Gðx; xÞ ¼ 0. The approach
taken here to look at tree-level three-parton correlators,
also can be used for explicit model calculations for T-odd
distribution functions originating from gluonic pole matrix
elements and the investigation of their effects in single spin
asymmetries.
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APPENDIX: USEFUL INTEGRALS

Often it is useful to attack integrals containing propa-
gator poles via light-cone variables, leading to integrals of
the type

#m
n1n2...ðx1; x2; . . .Þ ¼

Z d#

2$i

#m

ð#x1 % 1þ i%Þn1ð#x2 % 1þ i%Þn2 . . . ; (A1)

for which easy reduction rules exist [43]. We need specifically

#0
11ðx1; x2Þ ¼

!ðx1Þ!ð%x2Þ % !ð%x1Þ!ðx2Þ
x1 % x2

¼ !ðx1Þ % !ðx2Þ
x1 % x2

; (A2)

#0
111ðx1; x2; x3Þ ¼

x2
ðx1 % x2Þ

#0
11ðx2; x3Þ %

x1
ðx1 % x2Þ

#0
11ðx1; x3Þ (A3)

¼ ðx2 % x3Þx1!ðx1Þ þ ðx3 % x1Þx2!ðx2Þ þ ðx1 % x2Þx3!ðx3Þ
ðx1 % x2Þðx2 % x3Þðx3 % x1Þ

; (A4)
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Taking the limit x1 ! 0we get the gluonic pole correlators,
for distribution functions (0 ! x ! 1),
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2k1T

ð1% xÞF1ðx;0; kT; k1TÞ!ð1% xÞ
ð"2 % k2TÞðxB1 þð1% xÞA2ÞA1

;

(30)

and for fragmentation functions (x ¼ 1=z ' 1)

"Gðx; xÞ ¼ 0: (31)

We note that this result depends on the assumption that the
numerator does not grow with k%1 . If this is the case one
would find integrals of the type #1

111 (also given in the
Appendix) rather than those of the type #0

111 and one does
not get the required x1!ðx1Þ behavior in the calculation. In
models, terms proportional to k%1 ( k1 ) Pmay easily arise
from numerators of fermionic propagators [32,40] which in
turn may easily be suppressed by form factors at the
vertices. To prove a proper behavior within QCD one
would need to study the fully unintegrated correlators
such as e.g. in Ref. [41] and show that they fall off
sufficiently fast as a function of k1 ) P.

IV. CONCLUSIONS

In this work, we have investigated the gluonic pole
contributions to the distribution and fragmentation func-
tions. Instead of doing a quantitative analysis involving
details of a phenomenological model, we limit ourselves to
a spectral analysis within the spectator framework, in order
to understand the basic features of these quantities. The
advantage is that we are able to investigate only the soft
parts at tree level and take the zero-momentum limit of the
gluon involved. We simply assume that masses and verti-
ces do not spoil our analysis, which implies limits on the
mass distributions of the spectators, use of vertices that
cancel the bare-mass poles in the quark and gluon propa-
gators and behavior of vertices that assures sufficient con-
vergence of integrations. We find that under realistic
assumptions, the gluonic pole contributions for fragmenta-
tion correlators vanish whereas these contributions do not

vanish for distribution correlators. The result for fragmen-
tation correlators at nonzero gluon momentum is nonzero.
We stress that this certainly is not yet the full proof that
gluonic pole matrix elements vanish in the case of frag-
mentation. However, we consider this analysis as a step
towards such a proof and the possible direction to obtain
such a proof by only considering the appropriate color
gauge-invariant soft matrix elements. Such a proof is im-
portant as it eliminates a whole class of matrix elements
parametrized in terms of T-odd fragmentation functions
besides the T-odd fragmentation functions in the parame-
trization of the two-parton correlators. For instance, only
one of the contributions to the spin asymmetries considered
for jet-hyperon production in Ref. [42] remains. Moreover,
the remaining fragmentation functions appear with the
standard partonic cross section, so no gluonic pole cross
sections need to be considered for fragmenting final-state
partons, limiting these considerations to the distribution
functions involving initial-state partons.
As mentioned, the results in this paper may point the

way to finding a full proof of "Gðx; xÞ ¼ 0. The approach
taken here to look at tree-level three-parton correlators,
also can be used for explicit model calculations for T-odd
distribution functions originating from gluonic pole matrix
elements and the investigation of their effects in single spin
asymmetries.
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APPENDIX: USEFUL INTEGRALS

Often it is useful to attack integrals containing propa-
gator poles via light-cone variables, leading to integrals of
the type

#m
n1n2...ðx1; x2; . . .Þ ¼

Z d#

2$i

#m

ð#x1 % 1þ i%Þn1ð#x2 % 1þ i%Þn2 . . . ; (A1)

for which easy reduction rules exist [43]. We need specifically

#0
11ðx1; x2Þ ¼

!ðx1Þ!ð%x2Þ % !ð%x1Þ!ðx2Þ
x1 % x2

¼ !ðx1Þ % !ðx2Þ
x1 % x2

; (A2)

#0
111ðx1; x2; x3Þ ¼

x2
ðx1 % x2Þ

#0
11ðx2; x3Þ %

x1
ðx1 % x2Þ

#0
11ðx1; x3Þ (A3)

¼ ðx2 % x3Þx1!ðx1Þ þ ðx3 % x1Þx2!ðx2Þ þ ðx1 % x2Þx3!ðx3Þ
ðx1 % x2Þðx2 % x3Þðx3 % x1Þ

; (A4)
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Straightforward Integration

ΦG(x, x1 − x) ∼
1

(k2 − m2)

(Z dk−1
2π i

F1

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k + k1)2 − M2
s1 + iε)

+

Z dk−1
2π i

F2

“
k−1 , x, x1, kT , k1T

”

(k2
1 − m2

1 + iε)((k − k1)2 − m2 + iε)((P − k1)2 − M2
s2 + iε)

)

where, Fi

(
k−
1 , x, x1, k2

T , k2
1T

)
contain numerators and vertex functions

• Assume numerator doesn’t grow with k−
1 can perform k−

1 integrations

Θm
n1n2...(x1, x2, . . .) =

∫
dα

2π i

αm

(αx1 − 1 + iε)n1(αx2 − 1 + iε)n2 . . .
,

• Take x1 → 0 we get gluonic pole correlators, distribution and (0 ≤ x ≤ 1)
and Fragmentation functions (x = 1/z ≥ 1)

∆G(x, x) = 0 and ΦG(x, x) %= 0

Glunonic Pole contribution for Frag. vanishes



Comments |h;X〉

• All “T-odd” effects for fragmentation in ∆̃α
∂

(
1
z

)

and no “process dependence” ∆G(x, x) = 0.

∆̃α
∂

`
1
z

´
=

M

z
iH⊥(1)

1 (z)
1

2
[ /K, γα] "= 0

π∆G(
1

z
,
1

z
; K) =

M

z
iH̃⊥(1)

1 (z)
1

2
[ /K, γα] = 0

• Process dependence remains in the T-odd PDFs “jungle of Wilson
lines” Mulders et al. 2004-present

C [U]
G πΦα

G(x, x)
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z
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and no “process dependence” ∆G(x, x) = 0.

∆̃α
∂

`
1
z

´
=

M

z
iH⊥(1)

1 (z)
1

2
[ /K, γα] "= 0

π∆G(
1

z
,
1

z
; K) =

M

z
iH̃⊥(1)

1 (z)
1

2
[ /K, γα] = 0

• Process dependence remains in the T-odd PDFs “jungle of Wilson
lines” Mulders et al. 2004-present

C [U]
G πΦα

G(x, x)

Process Dependence. . . & Qiu Sterman Mech. from Gauge Links

• For the weighted cross sections the process dependence is in gluonic
pole factors Bomhof, Pijlman, Mulders 2004-2008 JHEP,NPB. . .

< qα
T dσ > ∼ Φ̃α[ !C]

∂ (x)σ̂lq→lq∆(z) + C [U(C)]
G πΦα[ !C]

G (x, x)σ̂lq→lq∆(z)

< qT σSivers
lH→lhX > ∼ +f⊥(1)

1T (x)σ̂lq→lqD1(z)

< qT σSivers
HH̄→ll̄X > ∼ −f⊥(1)

1T (x1)σ̂qq̄→ll̄f̄1(x2)

f⊥(1)
1T (x) = − g

2M
TF (x) Boer,Pijlman,Mulders 2003 NPB

• For more complicated processes one gets gluonic pole factors “[C]”

Φα[C]
∂ (x) = Φ̃α[ !C]

∂ (x) + C [U(C)]
G πΦα[ !C]

G (x, x)

∆α [C]
∂ (z) = ∆̃α[ !C]

∂

(
1
z

)
+ C [U(C)]

G π∆α[ !C]
G

(
1
z,

1
z

)
.

• Universality violated from gluonic pole matrix elements Sivers asymmetry
Collins Qui, Collins PRD 2007,2008 H H → h h X at high PT

T-odd T-odd
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III. TWO-GLUON EXCHANGE CONTRIBUTIONS

As we discussed in the last section, to demonstrate the
universality of the Collins function, we have to apply the
Ward identity to sum up all gluon exchange contributions
into the gauge link from the definition of the fragmentation
function. In order to use this argument, the eikonal propa-
gator should not contribute to the phase needed to generate
nonzero SSA associated with the Collins effects. This has
been explicitly demonstrated in the last section for the one-
gluon exchange contribution. In this section, we will ex-
tend the discussions to the two-gluon exchange contribu-
tions. Especially, we will show that these eikonal
propagators do not contribute to the phase for the SSAs.
The reason, again, is due to the timelike feature and the
momentum flow in the fragmentation process.

We will focus our discussions on some representative
diagrams from the two-gluon exchange contributions. All
other diagrams will follow accordingly. We show these
diagrams in Figs. 6(a)–6(c). The contribution from Fig. 6
(a) will depend on the following integral of the exchange
gluons’ momenta q1 and q2:

Z d4q1
ð2!Þ4

d4q2
ð2!Þ4 Mðq1; q2Þ

1

ðPA # q1Þ2 þ i"

% 1

ðPA # q1 # q2Þ2 þ i"

1

ðk0 # q1Þ2 þ i"

% 1

ðk0 # q1 # q2Þ2 þ i"

1

ðk# q1 # q2Þ2 þ i"

% 1

q21 þ i"

1

q22 þ i"
;

(21)

where k ¼ P1 ¼ k0 þ Ph is the fragmenting quark’s mo-
mentum andMðq1; q2Þ represents the numerators depend-
ing on q1 and q2, especially their transverse momentum
components. Following the arguments used in the last
section, the first two propagators in the above expression
can be further simplified by using the eikonal approxima-

tion, and then we will obtain the following expression:

Z dq#1 dq
þ
1

ð2!Þ2
dq#2 dq

þ
2

ð2!Þ2
1

#qþ1 þ i"

1

#qþ1 # qþ2 þ i"

% 1

ðk0 # q1Þ2 þ i"

1

ðk0 # q1 # q2Þ2 þ i"

% 1

ðk# q1 # q2Þ2 þ i"

1

q21 þ i"

1

q22 þ i"
; (22)

where q'i follow the definitions in the last section. The
normalization of the above integral has been changed for
convenience. This normalization is not relevant for our
discussions, because we want to show that the eikonal
propagators do not contribute to the phase needed for a
nonzero SSA, not the actual contribution from this dia-
gram. We will show that if we take pole contributions from
these two eikonal propagators, the final integral will van-
ish. Because of the existence of two eikonal propagators,
the analysis will be more complicated than that in the last
section. We discuss their contributions separately.
(1) Pole contribution from 1

#qþ1 #qþ2 þi" .

If we take the pole of this eikonal propagator, qþ1
and qþ2 will be constrained: qþ1 þ qþ2 ¼ 0, and the
integral of (22) will become

Z dqþ1 dq
þ
2

2!

#ðqþ1 þ qþ2 Þ
qþ1

Z dq#1 dq
#
2

ð2!Þ2

% 1

#2ðk0þ # qþ1 Þq#1 þ!1 þ i"

% 1

#2k0þðq#1 þ q#2 Þ þ!2 þ i"

% 1

#2kþðq#1 þ q#2 Þ þ !3 þ i"

% 1

2qþ1 q
#
1 þ!4 þ i"

1

2qþ2 q
#
2 þ!5 þ i"

; (23)

FIG. 6. Example diagrams for two-gluon exchange contributions (a,b,c) and one real gluon radiation contributions (d,e,f).
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We study the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-
transverse polarized nucleon-nucleon scattering, coming from the Collins effect multiplied by the quark
transversity distribution. We argue that the Collins function in this process is the same as that in the semi-
inclusive deep inelastic scattering. The experimental study of this process will provide us with important
information on the quark transversity distribution and test the universality of the fragmentation functions.

DOI: 10.1103/PhysRevLett.100.032003 PACS numbers: 12.38.Bx, 12.39.St, 13.87.Fh, 13.88.+e

I. Introduction.—Quark transversity distribution is one
of the most important quark distributions of nucleon that
remains unknown [1–3]. It is a quark distribution when the
nucleon is transversely polarized. Unlike the polarized
quark distribution in a longitudinal polarized nucleon, the
quark transversity is difficult to measure because it is a
chiral-odd distribution [2]. For example, it cannot be
studied in the inclusive deep inelastic scattering (DIS),
which can only probe the chiral-even parton distributions.
The Drell-Yan lepton pair production in pp scattering can
be used to study the quark transversity distributions [1,2],
but these have limited access to them at the collider ex-
periment at RHIC [4].

There have been suggestions to probe the quark trans-
versity from other processes [3]. For example, in Ref. [5], it
was proposed to study the quark transversity distributions
from the semi-inclusive hadron production in the DIS
(SIDIS) process, which can couple with another chiral-
odd fragmentation function, the so-called Collins fragmen-
tation function, to lead to a nonzero azimuthal single spin
asymmetry (SSA). This SSA has been studied by the
HERMES Collaboration at DESY [6], and a very interest-
ing result on the Collins fragmentation function was found
[7]. The Collins effect in the back-to-back two-hadron
production in e!e" annihilation has also been explored
by the BELLE Collaboration [8], and a first attempt to
extract the quark transversity distribution from the com-
bined analysis of these two experiments has been reported
recently [9]. The interference fragmentation function for
two-hadron production has also been suggested to study
quark transversity distribution in DIS and hadronic reac-
tions [10,11].

In this Letter, we investigate the possibility of exploring
the quark transversity distribution in pp collision at RHIC
by studying the azimuthal asymmetric distribution of had-
rons inside a jet [10,12]. We are interested in the hadron
production from the fragmentation of a transversely polar-
ized quark, which inherits transverse spin from the incident
nucleon through transverse-spin transfer in the hard par-
tonic scattering processes [10,13]. As we show in Fig. 1,

we will study the process,

 p#PA; S?$ ! p#PB$ ! jet#PJ$ ! X ! H#Ph$ ! X; (1)

where a transversely polarized proton with momentum PA
scatters on another proton with momentum PB, and pro-
duces a jet with momentum PJ (transverse momentum P?
and rapidity y1 in the laboratory frame). The three mo-
menta of PA, PB, and PJ form the so-called reaction plane.
Inside the produced jet, the hadrons are distributed around
the jet axis, and we are interested in studying the azimuthal
distribution of a particular hadron H, whose transverse
momentum PhT relative to the jet axis will define an
azimuthal angle with the reaction plane: !h, as shown in
Fig. 1. We also define the azimuthal angle of the transverse
polarization vector of the incident polarized proton: !s.

The leading order contribution to the jet production in
pp collision comes from 2 ! 2 subprocesses, where two
jets are produced back-to-back in the transverse plane. For
the reaction process of (1), one of the two jets shall frag-
ment into the final observed hadron. In this Letter, we study
the physics in the kinematic region of PhT % P?.
Following [14], we assume a factorization for this process,
where we can separate the jet production from the hadron
fragmentation. From our calculations, we find that there
exists a correlation between the above two azimuthal an-
gles !h and !s, coming from the quark transversity multi-
plied with the Collins fragmentation function. The study of
this azimuthal asymmetry will provide us with important
information on the quark transversity distributions, and
will also provide a crucial test for the universality of the

FIG. 1 (color online). Illustration of the kinematics for the
azimuthal distribution of hadrons inside a jet in pp scattering.
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(a) (b)

Fig. 4. Half moment of the Collins function for u → π+ in our model. (a) H
⊥(1/2)
1 at the model scale (solid line) and at a different scale under the assumption in

Eq. (37) (dot-dashed line), compared with the error band from the extraction of Ref. [6], (b) H
⊥(1/2)
1 /D1 at the model scale (solid line) and at two other scales

(dashed and dot-dashed lines) under the assumption in Eq. (38). The error band from the extraction of Ref. [7] is shown for comparison.

In Fig. 4(a), we have plotted the half moment of the Collins functions vs. z for the case u → π+. In the same panel, we plotted the
1−σ error band of the Collins function extracted in Ref. [6] from BELLE data, collected at a scale Q2 = (10.52)2 GeV2. In order to
achieve a reasonable agreement with the phenomenology, we choose a value of the strong coupling constant αs = 0.2. Such a value
is particularly small, especially when considering that our model has been tuned to fit the function D1 at a scale Q2

0 = 0.4 GeV2,
where standard NLO calculations give αs ≈ 0.57 [29,32]. In any case, the problem of the choice of αs is intimately related with the
problem of the evolution of the Collins function (see below).

In Fig. 4(b), we have plotted the ratio H
⊥(1/2)
1 /D1 and compared it to the error bands of the extraction in Ref. [7]. Also in this

case the agreement is good, with the above mentioned choice of αs = 0.2.
At this point, some comments are in order concerning the evolution of the Collins function (or of its half-moment) with the

energy scale. Such evolution is presently unknown, except for some work done in Ref. [33], which is however based on questionable
assumptions. Some authors (e.g., Refs. [6,7]) assume

(37)
H

⊥(1/2)
1

D1

∣∣∣∣
Q2

0

= H
⊥(1/2)
1

D1

∣∣∣∣
Q2

,

i.e., that the evolution of H
⊥(1/2)
1 is equal to that of D1. This seems unlikely, in view of the fact that the Collins function is chiral-odd

and thus evolves as a non-singlet. An alternative choice could be to assume

(38)H
⊥(1/2)
1

∣∣
Q2

0
= H

⊥(1/2)
1

∣∣
Q2,

i.e., that H
⊥(1/2)
1 does not evolve with the energy scale. This is an extreme hypothesis, which cannot be true because at some point

the positivity bound (35) would be violated at large z. We demonstrate this in Fig. 4(b) where we show how the ratio H
⊥(1/2)
1 /D1

behaves at three different energy scales if only D1 is evolved (we use the unpolarized fragmentation function of Ref. [29] for this
purpose). Clearly, in this case the ratio grows more steeply with z at higher energies, due to the decreasing of D1 in the large-z
region. While the evolution of the T-odd parton distribution and fragmentation functions remain an outstanding issue, these results
show that different assumptions on the Collins function scale dependence have a significant impact and should be considered with
care.

For the fragmentation u → K+ and s̄ → K+, the same analytic formulas are used but with the other sets of parameter values.
The results are shown in Figs. 5 and 6 for the u and s̄ quarks, respectively.

4. Asymmetries in e+e− annihilation

The BELLE Collaboration has reported measurements of various asymmetries in e+ + e− → π± + π± + X that can isolate the
Collins functions [4]. In particular, the number of pions in this case has an azimuthal dependence [34]

(39)Nh1h2(z1, z2) ∝
∑

q

eq
2
(

D1(q→h1)(z1)D1(q̄→h2)(z2) + sin2 θ

1 + cos2 θ
cos(φ1 + φ2)H

⊥(1/2)
1(q→h1)

(z1)H̄
⊥(1/2)
1(q̄→h2)

(z2)

)
,
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ε
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
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1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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(a) (b)

Fig. 5. Half moment of the Collins function for u → K+ in our model. (a) H
⊥(1/2)
1 at the model scale of 0.4 GeV2, (b) H

⊥(1/2)
1 /D1 at the model scale (solid line)

and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38).

(a) (b)

Fig. 6. Half moment of the Collins function for s̄ → K+ in our model. (a) H
⊥(1/2)
1 at the model scale of 0.4 GeV2, (b) H

⊥(1/2)
1 /D1 at the model scale (solid line)

and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38).

where φ1,2 are the azimuthal angles of the two pions relative to their jet axes (or thrust direction) and the 2 jet production plane. Nor-
malizing this distribution and extracting the azimuthal asymmetry gives a measure of the product of moments of Collins functions.
BELLE noted that there are QCD radiative corrections that compete with the leading twist effects. To cancel out those corrections
they take the ratio of the asymmetry for unlike sign events (π+π−) to the asymmetry for like sign events. This super ratio has the
form [7]

(40)A12(z1, z2) = 〈sin2 θ〉
〈1 + cos2 θ〉 (PU − PL),

where

(41)PU =
∑

q e2
q(H

⊥(1/2)
1(q→π+)

(z1)H
⊥(1/2)
1(q̄→π−)

(z2) + H
⊥(1/2)
1(q→π−)

(z1)H
⊥(1/2)
1(q̄→π+)

(z2))
∑

q e2
q(D1(q→π+)(z1)D1(q̄→π−)(z2) + D1(q→π−)(z1)D1(q̄→π+)(z2))

,

(42)PL =
∑

q e2
q(H

⊥(1/2)
1(q→π+)

(z1)H
⊥(1/2)
1(q̄→π+)

(z2) + H
⊥(1/2)
1(q→π−)

(z1)H
⊥(1/2)
1(q̄→π−)

(z2))
∑

q e2
q(D1(q→π+)(z1)D1(q̄→π+)(z2) + D1(q→π−)(z1)D1(q̄→π−)(z2))

.

Note that Eq. (40) is a linear approximation for PL & 1. For numerical studies, we take the unpolarized fragmentation functions
from Ref. [29] (NLO set) at the scale of the BELLE measurements, i.e., Q2 = (10.52)2 GeV2. We take also 〈sin2 θ〉/〈1 + cos2 θ〉 ≈
0.79.
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BELLE noted that there are QCD radiative corrections that compete with the leading twist effects. To cancel out those corrections
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(a) (b)

Fig. 4. Half moment of the Collins function for u → π+ in our model. (a) H
⊥(1/2)
1 at the model scale (solid line) and at a different scale under the assumption in

Eq. (37) (dot-dashed line), compared with the error band from the extraction of Ref. [6], (b) H
⊥(1/2)
1 /D1 at the model scale (solid line) and at two other scales

(dashed and dot-dashed lines) under the assumption in Eq. (38). The error band from the extraction of Ref. [7] is shown for comparison.

In Fig. 4(a), we have plotted the half moment of the Collins functions vs. z for the case u → π+. In the same panel, we plotted the
1−σ error band of the Collins function extracted in Ref. [6] from BELLE data, collected at a scale Q2 = (10.52)2 GeV2. In order to
achieve a reasonable agreement with the phenomenology, we choose a value of the strong coupling constant αs = 0.2. Such a value
is particularly small, especially when considering that our model has been tuned to fit the function D1 at a scale Q2

0 = 0.4 GeV2,
where standard NLO calculations give αs ≈ 0.57 [29,32]. In any case, the problem of the choice of αs is intimately related with the
problem of the evolution of the Collins function (see below).

In Fig. 4(b), we have plotted the ratio H
⊥(1/2)
1 /D1 and compared it to the error bands of the extraction in Ref. [7]. Also in this

case the agreement is good, with the above mentioned choice of αs = 0.2.
At this point, some comments are in order concerning the evolution of the Collins function (or of its half-moment) with the

energy scale. Such evolution is presently unknown, except for some work done in Ref. [33], which is however based on questionable
assumptions. Some authors (e.g., Refs. [6,7]) assume

(37)
H

⊥(1/2)
1

D1

∣∣∣∣
Q2

0

= H
⊥(1/2)
1

D1

∣∣∣∣
Q2

,

i.e., that the evolution of H
⊥(1/2)
1 is equal to that of D1. This seems unlikely, in view of the fact that the Collins function is chiral-odd

and thus evolves as a non-singlet. An alternative choice could be to assume

(38)H
⊥(1/2)
1

∣∣
Q2

0
= H

⊥(1/2)
1

∣∣
Q2,

i.e., that H
⊥(1/2)
1 does not evolve with the energy scale. This is an extreme hypothesis, which cannot be true because at some point

the positivity bound (35) would be violated at large z. We demonstrate this in Fig. 4(b) where we show how the ratio H
⊥(1/2)
1 /D1

behaves at three different energy scales if only D1 is evolved (we use the unpolarized fragmentation function of Ref. [29] for this
purpose). Clearly, in this case the ratio grows more steeply with z at higher energies, due to the decreasing of D1 in the large-z
region. While the evolution of the T-odd parton distribution and fragmentation functions remain an outstanding issue, these results
show that different assumptions on the Collins function scale dependence have a significant impact and should be considered with
care.

For the fragmentation u → K+ and s̄ → K+, the same analytic formulas are used but with the other sets of parameter values.
The results are shown in Figs. 5 and 6 for the u and s̄ quarks, respectively.

4. Asymmetries in e+e− annihilation

The BELLE Collaboration has reported measurements of various asymmetries in e+ + e− → π± + π± + X that can isolate the
Collins functions [4]. In particular, the number of pions in this case has an azimuthal dependence [34]

(39)Nh1h2(z1, z2) ∝
∑

q

eq
2
(

D1(q→h1)(z1)D1(q̄→h2)(z2) + sin2 θ

1 + cos2 θ
cos(φ1 + φ2)H

⊥(1/2)
1(q→h1)

(z1)H̄
⊥(1/2)
1(q̄→h2)

(z2)

)
,

Scaling-”evolution”
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Fig. 7. Azimuthal asymmetry A12(z1, z2) for the production of two pions as a function of z2 and integrated in bins of z1 at Q2 = 110.7 GeV2. Dashed lines
are obtained assuming Eq. (37), solid lines assuming Eq. (38). Note that the last z1 bin in our calculation is narrower than in the corresponding experimental
measurement.

For the calculation of the asymmetry we have to make some assumptions on the unfavored Collins fragmentation functions. In
order to have a guiding principle for our assumptions, we consider the Schäfer–Teryaev sum rule [35], which states that

(43)
∑

h

1∫

0

dzH
⊥(1)
1(q→h)(z) = 0 with H

⊥(1)
1 (z) = πz2

∞∫

0

dk2
T

k2
T

2M2
h

H⊥
1

(
z, k2

T

)
.

We assume that the sum rule holds in a strong sense, i.e., for pions and kaons separately and at the integrand level, for each value
of z and kT . For pions, it follows that

(44)H
⊥(1/2)
1(u→π−)

= −H
⊥(1/2)
1(u→π+)

.

The other ū, d , d̄ , unfavored Collins functions are related to the above by isospin and charge symmetries, Eq. (9). Our strong
interpretation of the Schäfer–Teryaev sum rule together with Eq. (10) (with D1 replaced by H

⊥(1/2)
1 ) implies

(45)H
⊥(1/2)
1(s→π−)

= −H
⊥(1/2)
1(s→π+)

= 0.

For kaons, the same considerations lead to the following assumptions

(46)H
⊥(1/2)
1(u→K−)

= −H
⊥(1/2)
1(u→K+)

,

(47)H
⊥(1/2)
1(s̄→K−)

= −H
⊥(1/2)
1(s̄→K+)

,

(48)H
⊥(1/2)
1(d→K−)

= −H
⊥(1/2)
1(d→K+)

= 0.

In Fig. 7 we show the values of the pion azimuthal asymmetry for four different ranges of z1, as a function of z2. The dashed
curves and solid curves are obtained respectively under the assumptions in Eqs. (37) and (38), respectively. The upper curves exceed
the data for the higher z2 values, which either reflects the need for corrections to the linear approximation in Eq. (40), or more likely
that assuming no evolution for the Collins function may be too severe an approximation.

We calculated the corresponding KK asymmetry, Fig. 8, and obtained even larger values, suggesting that there will be more
dramatic effects in this accessible channel.

5. Conclusions

In this Letter, we performed a new calculation of the Collins fragmentation function for u → π+, along the lines of Refs. [11,12]
but with some important differences: (i) we assumed the mass of the spectator is different from the mass of the fragmenting
quark, (ii) we introduced a form factor at the hadron–quark vertex, (iii) we fitted the values of the model parameters to reproduce
the unpolarized fragmentation function D1 at a scale Q2

0 = 0.4 GeV2. We compared the results of our model calculation to the
available parametrizations of the Collins function [6,7] extracted from e+e− annihilation and SIDIS data and found a reasonable
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Fig. 8. Azimuthal asymmetry A12(z1, z2) for the production of two kaons as a function of z2 and integrated in bins of z1 at Q2 = 110.7 GeV2. Dashed lines are
obtained assuming Eq. (37), solid lines assuming Eq. (38).

agreement. We stressed the importance of critically considering different assumptions on the evolution of the Collins function with
the energy scale.

For the first time we presented an estimate of the Collins function for u → K+ and s̄ → K+. In particular, we found that the
ratio H

⊥(1/2)
1 /D1 for u → K+ is almost identical to that for u → π+, while the ratio for s̄ → K+ is about twice as big.

Using the results of our model, we presented estimates for pion and kaon Collins asymmetries in e+e− annihilation at the
BELLE experiment. In order to calculate the unfavored Collins functions we adopted the “strong interpretation” of the Schäfer–
Teryaev sum-rule [35]. Our results are in qualitative agreement with the available BELLE data on the pions, but large uncertainties
arise from making different assumptions on the evolution of the Collins function as well as from determining the unfavored Collins
fragmentation function. For the kaons, we predict the asymmetries to be larger than the pions.
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FIG. 1: Definition of the azimuthal angles of the two hadrons.
In each case, φi is the angle between the plane spanned by the
lepton momenta and the thrust axis n̂, and the plane spanned
by n̂ and the hadron transverse momentum Phi⊥.

culations using reconstructed and generated tracks shows
an average angular deviation between the two of 75 mrad,
with a spread with root mean square of 74 mrad. This
smearing of the reconstructed axis leads to a reduction in
the measured azimuthal asymmetry, as discussed below.

Two experimental methods are used to measure az-
imuthal asymmetries. The first method (M12) gives rise
to the cos(φ1 + φ2) modulation in the di-hadron yields.
The yield is recorded as a function of the hadron angle
sum φ1+φ2, N12 = N12(φ1+φ2), and divided by the aver-
age yield to obtain the normalized rate R12 := N12(φ1 +
φ2)/〈N12〉, parametrized by R12 = a12 cos(φ1 +φ2)+ b12.

Here, a12 is a function of the first moment (H⊥q,[1]
1 ) of

the Collins function [10]

a12(θ, z1, z2) =
sin2 θ

1 + cos2 θ

H⊥q,[1]
1 (z1)H

⊥q,[1]
1 (z2)

Dq
1(z1)D

q

1(z2)
, (2)

where θ is the angle between the incoming lepton axis
and the thrust axis. An alternative method (M0) does
not rely on knowledge of the thrust axis: yields are mea-
sured as a function of φ0, the angle between the plane
spanned by the momentum vector of the first hadron and
the lepton momenta, and the plane defined by the two
hadron momenta. The corresponding normalized rate
R0 = N0(2φ0)/〈N0〉 is a function of cos(2φ0), and (fol-
lowing [11]) can be parametrized as a0 cos(2φ0)+ b0 with

a0(θ2, z1, z2) =
sin2 θ2

1 + cos2 θ2

f
(

H⊥q
1 (z1)H

⊥q

1 (z2)/M1M2

)

Dq
1(z1)D

q

1(z2)
.

(3)
f denotes convolution over the transverse hadron mo-
menta. M1 and M2 are the masses of the two hadrons, z1

and z2 are their fractional energies and θ2 is the angle be-
tween the beam axis and the second hadron momentum.
The sin θ2 dependence reflects the probability of finding
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FIG. 2: Top: Unlike(U)-sign and like(L)-sign pion pair nor-
malized rate R0 vs. 2φ0 in the bin z1(z2) ∈ [0.5, 0.7], z2(z1) ∈
[0.3, 0.5]. Bottom: Pion pair double ratio RU

0 /RL
0 vs. 2φ0 in

the same bin. The solid and slashed lines show the results of
the fit described in the text.

the two initial quarks with transverse spin. D
q

1(z) and

H
⊥q

1 denote fragmentation functions for anti-quarks.

To reduce hard gluon radiation, a two-jet-like topology
is enforced by requiring a thrust value T > 0.8, calcu-
lated from all charged and neutral particles with momen-
tum exceeding 0.1 GeV/c. The following selection criteria
were imposed on the charged pions used in the analysis
methods M12 and M0: (1) Tracks are required to origi-
nate from the collision vertex, and to lie in a fiducial re-
gion −0.6 < cos(θlab) < 0.9, where θlab is the polar angle
in the laboratory frame. (2) A likelihood ratio is used to
separate pions from kaons [5]: L(π)/[L(K)+L(π)] > 0.7.
MC studies show that less than 10% of pairs have at least
one particle misidentified. (3) We require z1, z2 > 0.2, to
reduce decay contributions to the pion yields. In ad-
dition we require the visible energy in the detector to
exceed 7 GeV. (4a) The tracks must lie in opposite jet-
hemispheres: (Ph1 ·n̂)(Ph2 ·n̂) < 0. (4b) QT is the trans-
verse momentum of the virtual photon from the e+e− an-
nihilation in the rest frame of the hadron pair [11]. We
require QT < 3.5 GeV/c, which removes contributions
from hadrons assigned to the wrong hemisphere.

The analysis is performed in (z1, z2) bins with bound-
aries at zi = 0.2, 0.3, 0.5, 0.7 and 1.0, where complemen-
tary off-diagonal bins (z1, z2) and (z2, z1) are combined.
In each (z1, z2) bin, normalized rates R12 and R0 are eval-
uated in 8 bins of constant width in the angles φ1 + φ2

and 2φ0 respectively, and fitted with the functional form
introduced above. Results in the lowest (z1, z2) bin are
shown in Fig. 2. In both methods the constant term (b12

or b0) is found to be consistent with unity for all bins.

In addition to their sensitivity to the Collins effect, R12

and R0 have contributions from instrumental effects and
QCD radiative processes: these are charge independent,

Ralf Seidl EIC Workshop, 
Hampton, VA May 08

Belle KEKB measurement of the Collins 
Frag. Function  PRL 2006 & arXiv:0805.2975

Reliability of Transversity Extraction Universality of Collins Fragmentation Function 

240 A. Bacchetta et al. / Physics Letters B 659 (2008) 234–243

(a) (b)

Fig. 5. Half moment of the Collins function for u → K+ in our model. (a) H
⊥(1/2)
1 at the model scale of 0.4 GeV2, (b) H

⊥(1/2)
1 /D1 at the model scale (solid line)

and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38).

(a) (b)

Fig. 6. Half moment of the Collins function for s̄ → K+ in our model. (a) H
⊥(1/2)
1 at the model scale of 0.4 GeV2, (b) H

⊥(1/2)
1 /D1 at the model scale (solid line)

and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38).

where φ1,2 are the azimuthal angles of the two pions relative to their jet axes (or thrust direction) and the 2 jet production plane. Nor-
malizing this distribution and extracting the azimuthal asymmetry gives a measure of the product of moments of Collins functions.
BELLE noted that there are QCD radiative corrections that compete with the leading twist effects. To cancel out those corrections
they take the ratio of the asymmetry for unlike sign events (π+π−) to the asymmetry for like sign events. This super ratio has the
form [7]

(40)A12(z1, z2) = 〈sin2 θ〉
〈1 + cos2 θ〉 (PU − PL),

where

(41)PU =
∑

q e2
q(H

⊥(1/2)
1(q→π+)

(z1)H
⊥(1/2)
1(q̄→π−)

(z2) + H
⊥(1/2)
1(q→π−)

(z1)H
⊥(1/2)
1(q̄→π+)

(z2))
∑

q e2
q(D1(q→π+)(z1)D1(q̄→π−)(z2) + D1(q→π−)(z1)D1(q̄→π+)(z2))

,

(42)PL =
∑

q e2
q(H

⊥(1/2)
1(q→π+)

(z1)H
⊥(1/2)
1(q̄→π+)

(z2) + H
⊥(1/2)
1(q→π−)

(z1)H
⊥(1/2)
1(q̄→π−)

(z2))
∑

q e2
q(D1(q→π+)(z1)D1(q̄→π+)(z2) + D1(q→π−)(z1)D1(q̄→π−)(z2))

.

Note that Eq. (40) is a linear approximation for PL & 1. For numerical studies, we take the unpolarized fragmentation functions
from Ref. [29] (NLO set) at the scale of the BELLE measurements, i.e., Q2 = (10.52)2 GeV2. We take also 〈sin2 θ〉/〈1 + cos2 θ〉 ≈
0.79.
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So far: Most phenomenological approaches to T-odd TMDs
! Final state interactions modeled by a one-gluon exchange

Sivers-effect ~5%, 

e.g. Diquark-model, MIT-Bag model etc.
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#% ! !"## !"$ “strength of FSI”

Can we do better? Can we learn about the quality of the relations?
 [L. Gamberg, M.S., in preparation]

• Still work within spectator framework,
  but non-perturbative model of FSI.

• In order to separate out GPDs, “cut” 
   the diagram !"“natural” picture of FSI.
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paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming

0.5 1 1.5 2

 PT

-0.02

-0.01

0

0.01

0.02

0.03

0.04

A
U

U
co

s2
φ

JLAB 12  GeV,  π+

JLAB 12  GeV,  π−

0.5 1 1.5 2

 PT

-0.02

-0.01

0

0.01

0.02

0.03

0.04

A
U

U
co

s2
φ

HERMES 27.5 GeV,  π+

HERMES 27.5 GeV,  π−

FIG. 6 (color online). Left panel: The cos2! asymmetry for #þ and #& as a function of PT at JLab 12 GeV kinematics. Right
panel: The cos2! asymmetry for #þ and #& as a function of PT for HERMES kinematics.
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GAMBERG, GOLDSTEIN, AND SCHLEGEL PHYSICAL REVIEW D 77, 094016 (2008)

094016-10

Same sign u and d Boer-Mulders function
from a diquark spectator model

Gamberg et al. L. P. Gamberg et al., Phys Rev D67:071504, 2003

L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

Collins calculated in the spectator framework
A. Bacchetta, et al.,  Phys. Lett. B 659, 234 (2008). 

<cos(2!h)>: Model 1



Flavor Dependence: Results & Phenomenology

Flavor-dependent PDFs from diquark models: u = 3
2s + 1

2a, d = a,

moments: h⊥(1/2)
1 (x) =

∫
d2!pT

|!pT |
M h⊥

1 (x, !p2
T ) L.G. Goldstein, Schlegel PRD 2008
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• Comparison to f
(u,d)
1 (Glück, Reya, Vogt) → parameters of the model, e.g. diquark masses,

normalization...

• Comparison to parameterization of Sivers function f⊥
1T → size and sign of FSI Anselmino et al. 2005

PRD

• Boer Mulders up and down are negative is spectator model and f
(u)
1T ∼ h

⊥(u)
1
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cos(2φh)
UU ∝

P
a e2
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R

d2pT d2kT δ(2)
„
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zh

«
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Mmπ
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1 H
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Model assumption:
Dis-favored fragmentation
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0 dzH
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Diquark spectator model does well... without Cahn term 



Beyond the One-Loop Approximation Beyond the One-Loop Approximation 

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

So far: Most phenomenological approaches to T-odd TMDs
! Final state interactions modeled by a one-gluon exchange

Sivers-effect ~5%, 

e.g. Diquark-model, MIT-Bag model etc.
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Can we do better? Can we learn about the quality of the relations?
 [L. Gamberg, M.S., in preparation]

• Still work within spectator framework,
  but non-perturbative model of FSI.

• In order to separate out GPDs, “cut” 
   the diagram !"“natural” picture of FSI.
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• Generalized Ladder approximation:

• Eikonal Propagator:
  Idea: highly energetic particle looses spin information !! ! "!
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Time-reversal forbids
Sivers function

Boer-Mulders function

•  Neglect gauge link operator:

•  If T-odd TMDs ! 0: Gauge Link not neglegible, physical effect:

Initial / Final state interactions
Time reversal switches sign:
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Lensing function given in terms of quark-diquark scattering amplitude  M:
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Summary.... Improvements FSI times Spatial Distortion Non-trivial RelationsNon-trivial Relations

•  Conjecture: factorization of final state interactions and spatial distortion:

: Lensing Function =  net transverse momentum

•  Av. transv. momentum of transv. pol. partons in an unpol. hadron:

•  Quantify distortion effect !"" flavor anormalous magnetic moment ! q

                !"" Prediction of signs for u- and d-quark T-odd TMDs.

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

!!!" " ! #"#!#" $
#
" %
!$!"#
"" "&# $

!
'$(" %!"&)*(" #

%&!"%'!
(

)
)&!

!

&"&)*($" #

%!"&)*($" #

#$"$ +
!$!"#
" "&# $

!
'$(" *(" ' *%"&)*(" #

)
)&!

!

"
&" % $ &("

#
"&)*($" #

Chiral-odd RelationChiral-odd Relation
• Av. transv. momentum of transv. pol. partons in an unpol. hadron:

• Spatial distortion in transv. plane of transv. pol. quarks quantified by

• Lattice QCD, const. quark model: and

Boer-Mulders function negative for u- and d-quarks!
[in agreement with large-N

c
, models.]
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